Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.836-840
/
2007
Large-Scale Particle Image Velocimetry (LSPIV)는 Particle Image Velocimetry (PIV)를 자연하천이나 실험실에서 넓은 영역($4m^2{\sim}45,000m^2$)에 적용할 수 있도록 확장시킨 것으로 지난 10여년 이상 세계적으로 널리 이에 대한 연구가 진행되고 있다. PIV는 seeding, illumination, recording 그리고 image processing으로 구성된다. LSPIV(Large Scale PIV)는 PIV의 기본원리를 근거로 하여 기존의 PIV에 비하여 실험실 내에서의 수리모형실험이나 일반 하천에서의 유속측정과 같은 큰 규모의 흐름해석을 할 수 있도록 seeding, illumination에 대한 조정이 필요하고, 촬영된 image에 대한 왜곡을 없애는 작업이 필요하다. LSPIV는 PIV의 네가지 단계를 포함하여 seeding, illumination, recording, image transformation, image processing 및 post-processing의 여섯 단계로 구성되어진다 (Li, 2002). LSPIV를 일반 하천에 적용시, 자연발생적인 tracers - 난류로 인한 표면 교란, 부유물, 수공구조물로 인해서 발생하는 자연 발생되는 거품 - 가 풍부해서 seeding이 불필요한 경우를 제외하고는 정확한 유속장의 해석을 위하여 인공적인 seeding을 필요로 한다. 일반적으로 Seeding 재료로 많이 이용되는 것은 wood mulch, Ecofoam, grain-straw 등이다. 하천에서 자연발생적 혹은 인위적 seeding을 하였을 때 이들 tracers의 물리적인 속성으로 바람에 쉽게 영향을 받고 이로 인하여 실제의 물표면유속을 대표하지 못하는 경우가 있다. 이에 실험실의 개수로에서 여러 가지 이용 가능한 tracers에 대하여 바람에 의한 오차 발생의 정도를 조사하였다. 실험에 사용된 seeding 재료로는 black polypropylene, Ecofoam, white polystyrene의 세가지를 이용하였다. black polypropylene (SG=0.92)과 white polystyrene (SG=0.0125)은 폭 1 m 이내의 개수로 실험 장치에서 유속장의 해석에 많이 이용되고 Ecofoam (SG=0.0065)은 수리 모형실험에서 많이 이용된다. seeding 물질에 따른 바람의 영향을 분석하기 위해서 폭 60cm의 개수로에서 seeding 물질을 변경하면서 펌프의 조작에 의해 3가지 단면평균유속을 발생시키고, 각 평균유속조건에 대해 4가지의 바람세기 - 바람이 없을 때와 팬의 바람세기를 1단, 2단, 3단으로 조정 - 를 발생시켰으며, 개수로위에서 촬영한 이미지의 상류측기준점으로부터 0.3556m 하류 지점을 횡단하는 단면의 표면유속을 측정하여 비교하였고, 그 단면의 중앙에서 물표면 바로 위 지점의 풍속을 측정하였다. 각 Seeding 물질에 대해 팬을 켜지 않았을 때, 즉 바람의 영향이 없을 때 측정한 표면유속을 바람의 세기가 변한 경우의 기준 표면유속으로 이용하였다. 본 연구의 결과 비중이 0.01 내외인 Ecofoam과 white polystyrene에 비해 비중이 0.92인 black polypropylene은 대부분이 물속에 잠겨 있어 흐름과 거의 일치하여 움직임을 알 수 있었다. 또한 흐름의 평균유속이 0.165 m/s의 저유속에서 바람이 tracers에 미치는 영향이 평균유속 0.558m/s인 경우보다 커서, 바람의 세기의 증가에 따라 표면유속 측정값이 급속히 감소되었다. 흐름의 평균유속이 큰 경우에는 바람이 tracer에 마치는 영향이 현격히 줄어듬을 보이고 있다. 결론적으로 유속이 증가함에 따라 바람의 영향은 감소하나, 바람의 영향을 최소화시키기 위해서는 가급적 비중이 큰 물질(0.5
Kim, Changjae;Park, Jaemin;Choi, Kanghyuk;Shin, Hyu-Soung;Hong, Sungchul
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.12
/
pp.271-279
/
2019
In extreme environment regions, unmanned rovers equipped with various sensors and devices are being developed for long-term exploration on behalf of humans. On the other hand, due to the harsh weather conditions and rough terrain, the rover camera has limited visible distance and field of view. Therefore, the rover cameras should be located for safe navigation and efficient terrain mapping. In this regard, to minimize the cost and time to manufacture the camera system on a rover, the simulation method using the rover design is presented to optimize the camera locations on the rover efficiently. In the simulation, a simulated terrain was taken from cameras with different locations and angles. The visible distance and overlapped extent of camera images, and terrain data accuracy calculated from the simulation were compared to determine the optimal locations of the rover's cameras. The simulated results will be used to manufacture a rover and camera system. In addition, self and system calibrations will be conducted to calculate the accurate position of the camera system on the rover.
A microscope is the fundamental research and diagnostic apparatus for clinical investigation of signaling transduction, morphological changes and physiological tracking of cells and intact tissues from patients in the biomedical laboratory science. Proper use, care and maintenance of microscope with comprehensive understanding in mechanism are fully requested for reliable image data and accurate interpretation for diagnosis in the clinical laboratory. The standard operating procedure (SOP) for light microscopes includes performance procedure, brief information of all mechanical parts of microscopes with systematic troubleshooting mechanism depending on the laboratory capacity. Maintenance program encompasses cleaning objective, ocular lenses and inner optics; replacement and calibration of light source; XY sample stage management; point spread function (PSF) measurement for confocal laser scanning microscope (CLSM); quality control (QC) program in fluorescent microscopy; and systematic troubleshooting. Laser safety is one of the concern for medical technologists engaged in CLSM laboratory. Laser safety guideline based on the laser classification and risk level, and advisory lab wear for CLSM users are also expatiated in this overview. Since acquired image data presents a wide range of information at the moment of acquisition, well-maintained microscopes with proper microscopic maintenance program are impulsive for its interpretation and diagnosis in the clinical laboratory.
The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.
In this study, The report analysed the characteristics of power drop in solar cell through thermal shock test. The solar cells were tested 500 cycles in $-40^{\circ}C$ lowest temperature and $120^{\circ}C$ highest temperature by thermal shock test on ironbound conditions, that excerpted standard of PV Module(KS C IEC-61215). The result of the efficiency analysis through measure of I-V, efficiency of Cell decreased from 13.9% to 11.0% and decreasing rate was 20.9% after test. The result of the surface analysis through EL, solar cell has damage of gridfinger and ribbon joint. Cell cracks were founded in damage of cells through cross section of solar cells. Also, Fill factors were decreased from 72.3% to 62.0% after thermal shock test and decreasing rate is 11.8%. therefore, Yearly power drop is aggravated with facts that cell crack, damage of surface and power loss of cell by change of I-V characteristic curve with decreasing of parallel resistance.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.36
no.4
/
pp.295-303
/
2018
The stereo camera system has a fixed baseline and therefore has a constant scale. However, it is difficult to measure the actual three-dimensional coordinate since the scale is not fixed when relative orientation parameters are determined through the key-point matching in the stereo image each time. Therefore, the purpose of this study was to perform the stereo camera calibration that simultaneously determines the internal characteristics of the left and right cameras and the camera relationship between them using the modified collinearity equation and compared it with the two independent single cameras calibration. In the experiment using the images taken at close range, the RMSE (Root Mean Square Error) of ${\pm}0.014m$ was occurred when the three dimensional distances were compared in the single calibration results. On the other hand, the accuracy of the three-dimensional distance of the stereo camera calibration was better because the stereo camera results were almost no error compared to the results from two single cameras. In the comparison of the epipolar images, the RMSE of the stereo camera was 0.3 pixel more than that of the two single cameras, but the effect was not significant.
Kim, Min-Su;Back, Geum-Mun;Kim, Dae-Sup;Kang, Tae-Yeong;Hong, Dong-Ki;Kwon, Kyung-Tae
The Journal of Korean Society for Radiation Therapy
/
v.22
no.2
/
pp.145-153
/
2010
Purpose: To accurately define internal target volume (ITV) for treatment of moving target considering tumor size and respiratory motion, we quantitatively investigated volume of target volume delineated on CT images from helical CT and 4D CT scans. Materials and Methods: CT images for a 1D moving phantom with diameters of 1.5, 3, and 6 cm, acryl spheres were acquired using a LightSpeed $RT^{16}CT$ simulator. To analyze effect of tumor motion on target delineation, the CT image of the phantoms with various moving distances of 1~4 cm, and respiratory periods of 3~6 seconds, were acquired. For investigating the accuracy of the target trajectory, volume ratio of the target volumes delineated on CT images to expected volumes calculated with diameters of spherical phantom and moving distance were compared. Results: Ratio$_{helical}$ for the diameter of 1, 5, 3, and 6 cm targets were $32{\pm}14%$, $45{\pm}14%$, and $58{\pm}13%$, respectively, in the all cases. As to 4DCT, RatioMIP were $98{\pm}8%$, $97{\pm}5%$, and $95{\pm}1%$, respectively. Conclusion: The target volumes delineated on MIP images well represented the target trajectory, in comparison to those from helical CT. Target volume delineation on MIP images might be reasonable especially for treatment of early stage lung cancer, with meticulous attention to small size target, large respiratory motion, and fast breathing.
The Journal of Korean Society for Radiation Therapy
/
v.16
no.1
/
pp.57-65
/
2004
Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.
PET (positron emission tomography) permits the investigation of physiological and biochemical processes in vivo. The accuracy of quantifying PET data is affected by its finite spatial resolution, which causes partial volume effects. In this study, we developed a method for partial volume correction using Hoffman phantom PET and MR data, and applied various FWHM (full width at half maximum) levels. We also applied this method to PET images of normal controls and tested for the possibility of clinical application. $^{18}$ F-PET Hoffman phantom images were co-registered to MR slices. The gray matter and white matter regions were then segmented into binary images. Each binary image was convolved by 4, 8, 12, 16 mm FWHM levels. These convolved images of gray and white matter were merged corresponding to the same level of FWHM. The original PET images were then divided by the convolved binary images voxel-by-voxel. These corrected PET images were multiplied by binary images. The corrected PET images were evaluated by analyzing regions of interests, which were drawn on the gray and white matter regions of the original MR image slices. We calculated the ratio of white to gray matter. We also applied this method to the PET images of normal controls. On analyzing the corrected PET images of Hoffman phantom, the ratios of the corrected images increased more than that of the uncorrected images. With the normal controls, the ratio of the corrected images increased more than that of the uncorrected images. The ratio increase of the corrected PET images was lower than that of the corrected phantom PET images. In conclusion, the method developed for partial volume correction in PET data may be clinically applied, although further study may be required for optimal correction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.