• Title/Summary/Keyword: 총유기탄소 분석기

Search Result 65, Processing Time 0.03 seconds

Mineral Composition, Depositional Environment and Spectral Characteristics of Oil Shale Occurring in Dundgobi, Mongolia (몽골 돈디고비지역에서 산출되는 오일셰일의 광물조성, 퇴적환경 및 분광학적 특성)

  • Badrakh, Munkhsuren;Yu, Jaehyung;Jeong, Yongsik;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.83-93
    • /
    • 2015
  • This study investigated genetic, mineralogical and spectral characteristics of oil shale and coal samples in Dundgobi area, Mongolia. Based the Rock/Eval and Total organic carbon (TOC) analysis, kerogen type, hydrogen quantity, thermal maturity and depositional environment were confirmed. Moreover, the mineral composition of oil shale and coal samples were analyzed by XRD and spectroscopy. The result of Rock Eval/TOC analysis revealed that the samples of Eedemt deposit are immature to mature source rocks with sufficient hydrocarbon potential, and the kerogen types were classified as Type I, Type II and Type III kerogen. On the other hand, the samples from Shine Us Khudag deposit were mature with good to very good hydrocarbon potential rocks where kengen types are defined as Type I, Type II/III and Type III kerogen. According to the carbon and sulfur contents, the depositional environment of the both sites were defined as a freshwater depositional environment. The XRD analysis revealed that the mineral composition of oil shale and coal samples were quartz, calcite, dolomite, illite, kaolinite, montmorillonite, anorthoclase, albite, microcline, orthoclase and analcime. The absorption features of oil shale samples were at 1412 nm and 1907 nm by clay minerals and water, 2206 nm by clay minerals of kaolinite and montmorillonite and 2306 nm by dolomite. It is considered that spectral characteristics on organic matter content test must be tested for oil shale exploration using remote sensing techniques.

Geochemical Study of the Jigunsan Shale: A Sequence Stratigraphic Application to Defining a Middle Ordovician Condensed Section, Taebacksan (Taebaeksan) Basin (직운산 세일층의 지화학적 연구: 태박산분지 오오도비스 중기 응축층 규명을 위한 시퀀스층서학적 적용)

  • Ryu, In-Chang;Ryu, Sun-Young;Son, Byeong-Kook
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.27-53
    • /
    • 2009
  • A 30-m-thick Middle Ordovician Jigunsan Shale exposed along the southern limb of the Backunsan (Baekunsan) Syncline, Taebacksan (Taebaeksan) basin, has been simply considered as a transgressive shale sequence onlapped the underlying Maggol platform carbonates. Results of this study, however, suggest that majority of the Jigunsan Shale be interpreted as a regressive shale sequence downlapped onto a thin (ca. 240 cm) marine stratigraphic unit consisting of organic-rich (>3 wt.% of TOC) black shales in the lower Jigunsan Shale, which was accumulated at the time of maximum regional transgression. Detailed stratigraphic analysis in conjunction with XRD, XRF, and ICP-MS as well as Rock-Eval pyrolysis allows the thin marine stratigraphic unit in the Jigunsan Shale to define a condensed section that was deposited in a distinctive euxinic zone formed due to expansion of pycnocline during the early highstand phase. As well, a number of stratigraphic horizons of distinctive character that may have sequence stratigraphic or environmental significance, such as transgressive surface, maximum flooding surface, maximum sediment starvation surface, and downlap surface, are identified in the lower Jigunsan Shale. In the future, these stratigraphic horizons will provide very useful information to make a coherent regional stratigraphic correlation of the Middle Ordovician strata and to develop a comprehensive understanding on stratigraphic response to tectonic evolution as well as basin history of the Taebacksan Basin.

Total Organic Carbon Analysis Chip Based on Photocatalytic Reaction (광촉매 반응을 이용한 총유기탄소 분석 칩)

  • Kim, Seung Deok;Jung, Dong Geon;Kwon, Soon Yeol;Choi, Young Chan;Lee, Jae Yong;Koo, Seong Mo;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.128-132
    • /
    • 2020
  • Total organic carbon (TOC) analysis equipment, which was previously used to prevent eutrophication in advance, is heavy, bulky, and expensive; therefore, so it is difficult to be carried and has been used as an experimental unit. In this study, a through-carbon analysis chip that integrates pretreatment through photocatalytic oxidation and carbon dioxide measurement using a pH indicator was investigated. Both the total carbon - inorganic carbon method and the nonpurgeable organic carbon (NPOC) measurement method require an acidification part for injecting an acid solution for inorganic carbon measurement and removal, an oxidation part for total carbon or NPOC oxidation and a measurement part for Carbon dioxide (CO2) measurement. Among them, the measurement of oxidation and CO2 requires physical technology. The proposed TOC analysis chip decomposed into CO2 as a result of the oxidizing of organic carbon using a photocatalyst, and the pH indicator that was changed by the generated CO2 was optically measured. Although the area of the sample of the oxidation part and the pH indicator of the measurement part were distinguished in an enclosed space, CO2 was quantified by producing an oxidation part and a measurement part that shared the same air in one chip. The proposed TOC analysis chip is less expensive and smaller, cost and size are disadvantages of existing organic carbon analysis equipment, because it does not require a separate carrier gas to transport the CO2 gas in the oxidation part to the measurement part.

Optimal coagulant and its dosage for turbidity and total organic dissolved carbon removal (탁도와 총유기탄소 제거를 위한 최적응집제 및 투여량 선정 연구)

  • Park, Hanbai;Woo, Dal-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2321-2327
    • /
    • 2015
  • Three coagulants, alum sulfate(alum), poly aluminum chloride(PAC) and poly aluminum silicate chloride (PASC), were used to remove low to high turbidity and TOC in surface and ground blended water. Laboratory experiments and pilot plant experiments were carried out to evaluate the optimal coagulant and its dosage. To determine the optimized coagulant and its dosage, the turbidity, TOC and pH were measured. The experimental results showed the best removal performance using PASC. The optimal dosage of PASC between 3-20 NTU was found to be 15 mg/L in the jar test. In the pilot test, a 15 mg/L PASC dosage was applied and resulted in the efficient removal of turbidity and TOC between 3.6-27 NTU. The removal efficiency of PASC increased with increasing turbidity and TOC.

Characteristics of Natural Organic Matter (NOM) on Han River and Criterion of Enhanced Coagulation (한강원수 자연유기물의 특성분석 및 강화응집 기준 평가)

  • Jeong, Youngmi;Kweon, Jihyang;Lee, Sanghyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.653-661
    • /
    • 2007
  • The Disinfectants/Disinfection By-products (D/DBP) Rule proposed by the US Environmental Protection Agency requires the implementation of enhanced coagulation as a control strategy for natural organic matter (NOM) removal and as a means of limiting the formation of all DBPs, i.e., not just the trihalomethanes and haloacetica acids. To control DBP formation, several best available technologies (BATs) were determined for removal of DBPs and DBP precursors. The enhanced coagulation is one of the BATs for DBP precursors removal. Treatment facilities that achieve a specified percent removal of total organic carbon (TOC) prior to the application of a continuous disinfectant or that achieve a residual TOC concentration < 2mg/L prior to the application of a continuous disinfectant are considered to be in compliance with enhanced coagulation. The enhanced coagulation was applied to raw water in Korea, the Han River. Raw water were examined and effects of different raw water qualities on enhanced coagulation were investigated. Three analyses were used for raw water characteristics, water quality measurement, molecular weight distributions, hydrophobic/hydrophilic fractionation. The Han River had the relatively low alkalinity and low organic carbon concentration. The results of molecular weight distributions showed significant portions of low molecular weight organics, which is very different from most water in USA. The alum doses for the required TOC removal guided from USEPA manual were quite low (i.e. 10~30 mg/L alum) for the water, probably due to the specific water quality of the Han River.

Comparison of Bacterial Regrowth on Plant- and Coal-based Granular Activated Carbon (식물계활성탄과 석탄계활성탄에서의 세균재생장 비교)

  • 이동근;박성주;하배진;하종명;이상현;이재화
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • Activated carbon has been used in water treatment, because they strongly adsorb organic material including contaminant. Water purifier usually use activated carbon, and bacterial regrowth on that could induce many problems. Model columns, packed with coal- and plant-based granular activated carbon (GAC), were operated with rechlorinated tap water to compare the degree of bacterial regrowth on different GACs. GAC columns decreased the concentration of total organic carbon and chlorine, while they are not good for the decrease of ions. Breakthrough of bacteria were occurred after eight days of operation, and reached 1.1 ${\times}$ 10$^3$ CFU/mL on coal based GAC and 6.2 ${\times}$ 10$^2$ CFU/mL on coconut based one. Bacterial activities on GAC were between 15.35 ∼ 29.06 $\mu\textrm{g}$ INT-formazan/g-GAC/h. Bacterial concentration and activities were higher in coal based GAC than coconut based one. Bacterial regrowth on GAC was clarified and regrowth effect of coal-based GAC was higher than that of coconut-based one.

Study on Development of Artificial Neural Network Forecasting Model Using Runoff, Water Quality Data (유출량 및 수질자료를 이용한 인공신경망 예측모형 개발에 관한 연구)

  • Oh, Chang-Ryeol;Jin, Young-Hoon;Kim, Dong-Ryeol;Park, Sung-Chun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.1035-1044
    • /
    • 2008
  • It is critical to study on data charateristics analysis and prediction for the flood disaster prevention and water quality monitoring because discharge and TOC data in a river channel are strongly nonlinear. Therefore, in the present study, prediction models for discharge, TOC, and TOC load data were developed using approximation component in the last level and detail components segregated by wavelet transform. The results show that the developed model overcame the persistence phenomenon which could be seen from previous models and improved the prediciton accuracy comparing with the previous models. It might be expected that the results from the present study can mitigate flood disaster damage and construct active alternatives to various water quality problems in the future.

The method for total organic carbon analysis employing TiO2 photocatalyst (이산화티타늄 광촉매를 이용한 총유기탄소 분석방법)

  • Park, Buem Keun;Kim, Sung Mi;Lee, Young-Jin;Paik, Jong-Hoo;Shin, Jeong Hee
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.320-325
    • /
    • 2021
  • Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) methods are conventional analytical methods to analyze water quality. Both of these methods are technically indirect measurement methods, require complicated preconditions, and are time-consuming. On the other hand, the total organic carbon (TOC) method is a direct and fast measurement method which is more intuitive and accurate than the BOD and COD methods. However, general TOC analysis methods involve complicated processes and high power consumption owing to the process of phase transition from liquid to gas by a high-temperature heater. Furthermore, periodic consumables are also required for the removal of inorganic carbon (IC). Titanium dioxide (TiO2) is one of the most suitable photocatalysts for simple processes. Its usage involves low power consumption because it only reacts with the organic carbon (OC) without the requirement of any other reagents and extra processes. We investigated a TiO2 photocatalyst-based TOC analysis for simple and affordable products. TiO2-coated fiber substrate maintained under carbon included water was exposed to ultraviolet (UV) radiation of wavelength 365 nm. This method is suitable for the real-time monitoring of water pollution because of its fast reaction time. Its linear property is also sufficient to match the real value.

TiO2 Photocatalytic Reaction on Glass Fiber for Total Organic Carbon Analysis (총유기탄소 분석을 위한 유리섬유를 이용한 이산화티타늄 광촉매 반응)

  • Park, Buem Keun;Lee, Young-Jin;Shin, Jeong Hee;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.102-106
    • /
    • 2022
  • Currently, the demand for real-time monitoring of water quality has increased dramatically. Total organic carbon (TOC) analysis is a suitable method for real-time analysis compared with conventional biochemical oxygen demand (BOD) and chemical oxygen demand (COD) methods in terms of analysis time. However, this method is expensive because of the complicated internal processes involved. The photocatalytic titanium dioxide (TiO2)-based TOC method is simpler as it omits more than three preprocessing steps. This is because it reacts only with organic carbon (OC) without extra processes. We optimized the rate between the TiO2 photocatalyst and binder solution and the TiO2 concentration. The efficiency was investigated under 365 nm UV exposure onto a TiO2 coated substrate. The optimized conditions were sufficient to apply a real-time monitoring system for water quality with a short reaction time (within 10 min). We expect that it can be applied in a wide range of water quality monitoring industries.

Distributions of Organic Matter and Heavy Metals in the Surface Sediment of Jaran Bay, Korea (자란만 표층 퇴적물 중 유기물과 중금속 농도분포)

  • Hwang, Hyunjin;Hwang, Dong-Woon;Lee, Garam;Kim, Hyung-Chul;Kwon, Jung-No
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.78-91
    • /
    • 2018
  • In order to understand the distributions of organic matter and heavy metal concentrations in the surface sediment of Jaran Bay, we measured the grain size, total organic carbon (TOC), total nitrogen (TN), and heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn) in surface sediments collected at 15 stations in this bay in November 2014. The sediment consisted of finer sediment such as mud and clay, with 8.6-9.8Ø($9.3{\pm}0.3$Ø) of mean grain size. The concentrations of TOC and TN in the sediment ranged from 1.51-2.39 % ($1.74{\pm}0.22%$) and 0.20-0.33 % ($0.23{\pm}0.03%$), respectively, and did not show spatial difference. The carbon to nitrogen ratio (C/N ratio) ranged from 5-10, indicating that organic matter in the sediment originated from oceanic sources such as animal by-products from fish and shellfish farms. The concentrations of Cr, Fe, and Mn were much higher in the mouth of the bay than in the inner bay, and the concentrations of As, Cd, Cu, Hg, Pb, and Zn showed an opposite distribution pattern. Based on the results of the sediment quality guidelines (SQGs), enrichment factor (EF), geoaccumulation index ($I_{geo}$), pollutant load index (PLI), and ecological risk index (ERI), the surface sediment in Jaran Bay is not polluted or only slightly polluted with Cd, Cr, Cu, Hg, Pb, and Zn, whereas it is moderately to strongly polluted with As. In particular, some regions in the bay were identified as having a considerable risk status, indicating that metal concentration in the sediment could impact benthic organisms. Thus, the systematic management for marine and land sources of organic matter and heavy metals around Jaran Bay is necessary in order to ensure seafood safety and maintain sustainable production on shellfish farms.