• Title/Summary/Keyword: 촉매 연소

Search Result 342, Processing Time 0.028 seconds

HCCI Combustion Engines with Ultra Low CO2 and NOx Emissions and New Catalytic Emission Control Technology (CO2/NOx 초저배출형 HCCI 엔진 연소기술과 신촉매제어기술)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1413-1419
    • /
    • 2008
  • The Kyoto Protocol, that had been in force from February 16, 2005, requires significant reduction in $CO_2$ emissions for all anthropogenic sources containing transportation, industrial, commercial, and residential fields, etc, and automotive emission standards for air pollutants such as particulate matter (PM) and nitrogen oxides $(NO_x)$ become more and more tight for improving ambient air quality. This paper has briefly reviewed homogeneous charge compression ignition (HCCI) combustion technology offering dramatic reduction in $CO_2,\;NO_x$ and PM emissions, compared to conventional gasoline and diesel engine vehicles, in an effort of automotive industries and their related academic activities to comply with future fuel economy legislation, e.g., $CO_2$ emission standards and corporate average fuel economy (CAFE) in the respective European Union (EU) and United States of America (USA), and to meet very stringent future automotive emission standards, e.g., Tier 2 program in USA and EURO V in EU. In addition, major challenges to the widespread use of HCCI engines in road applications are discussed in aspects of new catalytic emissions controls to remove high CO and unburned hydrocarbons from such engine-equipped vehicles.

The addition of nitrogen oxides for improving the rate of catalytic ozone-induced oxidation of soot (산화질소 첨가에 의한 오존 기반 탄소입자상물질 촉매연소반응 속도의 개선)

  • Lee, Namhun;Park, Tae Uk;Lee, Jin Soo;Lee, Dae-Won
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, we examined the effect of NO addition on the ozone-induced soot oxidation activity of $LaMnO_3$ perovskite catalysts. The addition of 10~20% NO ($NO_2$) with respect to the concentration of ozone effectively enhanced the rate of ozone-induced soot oxidation rate over $LaMnO_3$. However, the excessive addition of NO ($NO_2$) was detrimental to ozone-induced soot oxidation activity. It is supposed nitrogen oxides would adsorb on the catalyst and then react with carbon-oxygen species developed on soot surface, but an excessive addition of nitrogen oxide would inhibit the formation of carbon-oxygen species, which is a key intermediate in the reaction, and consequently suppress the oxidation rate of soot.

Synthesis of Poly(glycidyl azide-co-glycidyl ferrocenyl ether) (Poly(glycidyl azide-co-glycidyl ferrocenyl ether)의 합성)

  • Jung, Haeji
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2019
  • Ferrocene and ferrocene derivatives have been widely used as a burning rate catalyst for composite solid propellants. However, its tendency to migrate through the propellant grain and to crystallize at the surface changes the composition of propellant which results in unpredictable burning rate. To overcome the weakness of ferrocene catalyst, we designed a polymer containing ferrocene, poly(glycidyl azide-co-glycidyl ferrocenyl ether) (GAFP). GAFPs were synthesized from poly(epichlorohydrin-co-glycidyl ferrocenyl ether) (PEGF) which has ferrocenyl ethers in its pendant groups. The structures of GAFPs were confirmed by FT-IR, $^1H$ and $^{13}C$ NMR spectral analyses. Thermal properties of the GAFPs were evaluated using differential scanning calorimeter (DSC). As the contents of ferrocene increased, the glass transition temperature ($T_g$) of the GAFPs shifted to a higher temperature, and the decomposition temperature ($T_d$) decreased because the ferrocene worked as a burning rate catalyst.

Hydrodynamic Characteristics of Absorbent and Catalyst for Pre-combustion CO2 Capture (연소 전 이산화탄소 회수를 위한 흡수제 및 촉매의 수력학적 특성)

  • Ryu, Ho-Jung;Yoon, Joo-Young;Lee, Dong-Ho;Shun, Dowon;Park, Jaehyeon;Park, Yeong-Seong
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.437-445
    • /
    • 2013
  • To develop SEWGS (sorption enhanced water gas shift) system using dry $CO_2$ absorbent for pre-combustion $CO_2$ capture, hydrodynamic characteristics of $CO_2$ absorbents were measured and investigated. The minimum fluidization velocity of $CO_2$ absorbent was measured and the effects of the operating conditions were investigated to operate the system at bubbling fluidized bed condition. The minimum fluidization velocity decreased as pressure and temperature increased. Moreover, the minimum fluidization velocity decreased as column diameter increased. The effects of operating conditions on the solid circulation rate were measured and investigated to select appropriate operating conditions for continuous $CO_2$ capture and regeneration. The measured solid circulation rates were ranged between 10 and 65 kg/h and increased as the solid injection velocity, gas velocity in the regeneration reactor, and solid height increased.

Sensing Characteristics of $SnO_{2}$ type CO sensors for combustion exhaust gases monitoring (연소배가스 모니터링을 위한 $SnO_{2}$계 CO센서의 검지특성)

  • Kim, I.J.;Han, S.D.;Lim, H.J.;Son, Y.M.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.369-375
    • /
    • 1997
  • $V_{2}O_{5}/ThO_{2}/Pd$-doped $SnO_{2}$ sensor has a good selectivity and stability to CO at high sensor temperature of about $500^{\circ}C$, and shows rapid response. In particular, many kinds of interference gases, such as $NO_{x}$, $C_{3}H_{8}$, $CH_{4}$ and $SO_{2}$ have been found to give only a slight influence on the sensor selectivity to CO gas sensitivity by doped $V_{2}O_{5}$ (3.0 wt.%). For the sensor we used well-known thick film technological route with $V_{2}O_{5}$(3.0 wt.%), Pd(1.0 wt.%) and $ThO_{2}$(l.5 wt.%) as catalytic materials. In the case of mixed $NO_{x}$-CO gases, as combustion exhaust gas, only CO detection by $SnO_{2}$ type semiconductor sensor is generally very difficult because of $NO_{x}$ interference. The developed sensors can use to measure the exhausting gas of the automobile or the boiler for the Air-to-Fuel ratio control.

  • PDF

Comparison of Combustion Characteristics On the Basis of the Dilution Ratio in Diesel Engines with LPL EGR (저압 EGR을 적용한 디젤엔진의 희석비에 따른 연소 특성 비교)

  • Lim, Gi-Hun;Park, Jun-Hyuk;Choi, Young;Lee, Sun-Youp;Kim, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • Exhaust gas recirculation (EGR) is more effective than selective catalytic reduction (SCR) or lean $NO_x$ trap (LNT) for the reduction of $NO_x$ emissions in diesel engines. A large amount of EGR gas is necessary to satisfy the stringent regulations on $NO_x$ emissions. Low pressure loop (LPL) EGR is almost independent of the variable geometry turbocharger (VGT) at a specific boost pressure, so LPL EGR is better than conventional high pressure loop (HPL) EGR in terms of EGR supply. We compare the influence of HPL EGR and LPL EGR on the combustion characteristics at a constant boost pressure in a diesel engine. The dilution ratio was employed as an independent parameter to analyze the effect of the dilution of the intake charge for each EGR loop. At the same level of $NO_x$ emissions, the fuel consumption and smoke opacity were slightly lower for LPL EGR than for HPL EGR.

Pyrolysis Effect of Nitrous Oxide Depending on Reaction Temperature and Residence Time (반응온도 및 체류시간에 따른 아산화질소 열분해 효과)

  • Park, Juwon;Lee, Taehwa;Park, Dae Geun;Kim, Seung Gon;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1074-1081
    • /
    • 2021
  • Nitrous oxide (N2O) is one of the six major greenhouse gases and is known to produce a greenhouse ef ect by absorbing infrared radiation in the atmosphere. In particular, its global warming potential (GWP) is 310 times higher than that of CO2, making N2O a global concern. Accordingly, strong environmental regulations are being proposed. N2O reduction technology can be classified into concentration recovery, catalytic decomposition, and pyrolysis according to physical methods. This study intends to provide information on temperature conditions and reaction time required to reduce nitrogen oxides with cost. The high-temperature ranges selected for pyrolysis conditions were calculated at intervals of 100 K from 1073 K to 1373 K. Under temperatures of 1073 K and 1173 K, the N2O reduction rate and nitrogen monoxide concentration were observed to be proportional to the residence time, and for 1273 K, the N2O reduction rate decreased due to generation of the reverse reaction as the residence time increased. Particularly for 1373 K, the positive and reverse reactions for all residence times reached chemical equilibrium, resulting in a rather reduced reaction progression to N2O reduction.

NOx Emission Characteristics with Operating Conditions of SNCR in SRF Usage Facilities (고형연료제품 사용시설에서의 SNCR의 운전조건에 따른 NOx 배출특성)

  • Seo, Je-Woo;Kim, Younghee
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.350-358
    • /
    • 2021
  • The results of this study shows that the combustor temperature ranged from 848.27 to 1,026.80 ℃, averaging about 976.61 ℃, and the NOx concentration increased as the temperature increased. The urea usage ranged from 291.00 to 693.00 kg d-1, averaging about 542.34 kg d-1, and the NOx concentration decreased as the urea usage increased. Residence time was about 3.38 to 9.17 s, averaging about 5.22 s, about 2.61 times larger than the 2 s of the design details. This is 1,086 kg h-1, averaging about 55.71%, compared to the 1,950 kg h-1 SRF input permission standard. The combustion chamber area is constant, but the residence time is shown to increase with the decrease of exhaust gas. The O2/CO ratio was 847.05 to 14,877.34, averaging about 3,111.30, and the NOx concentration slightly increased as the O2/CO ratio increased. As the combustor temperature and O2/CO ratio increased, the combustion reaction with nitrogen in the air increased and the NOx concentration slightly increased. As the urea usage and residence time increased, the NOx concentration decreased slightly with an increase in reactivity with NOx. The NOx concentration at the stack ranged from 7.88 to 34.02 ppm with an average of 19.92 ppm, and was discharged within the 60 ppm emission limit value. The NOhx emission factor was 1.058 to 1.795 kg ton-1, averaging about 1.450 kg ton-1. This value was about 24.87% of the maximum emission factor of 5.830 kg ton-1 of other solid fuels. Other synthetic resins and industrial wastes were 79.80% and 43.65% compared to 1.817 kg ton-1 and 3.322 kg ton-1, respectively. This value was similar to 1.400 kg ton-1 of RDF in the NIER notice (2005-9), 10.98% compared to the maximum SRF of 13.210 kg ton-1. Therefore, the NOx emission factor had a large deviation.

Characteristics of LPG Fuel Reforming Utilizing Plasma Reformer (LPG 연료의 플라즈마 개질 특성연구)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyoung;Cho, Yongseok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.17-22
    • /
    • 2012
  • In this study, characteristics of reforming process of Automotive LPG fuel using plasma reactor are investigated. Because plasma reformer technology has advantages of a fast start-up and wide fuel/oxidizer ratio of operation, and reactor size is smaller and more simple compared to typical combustor and catalytic reactor, plasma reforming is suitable to the on-board vehicle reformer. To evaluate the characteristics of the reforming process, parametric effect of $O_2$/C ratio, reactant flow rate and plasma power on the process were investigated. In the test of varying $O_2$/C ratio from partial oxidation stoichiometry to combustion stoichiometry, conversion of LPG was increased but selectivity of $H_2$ decreased. The optimum condition of $O_2$/C ratio for the highest $H_2$ yield was determined to be 0.8~0.9 for 20~50 lpm. The result can be a guide to map optimal condition of reforming process.

The Past and Future Perspectives of Hydrogen Peroxide as Rocket Propellants (발사체 추진제로서 과산화수소의 과거와 미래전망)

  • Ha, Seong-Up;Kwon, Min-Chan;Seo, Kyoun-Su;Han, Sang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.717-728
    • /
    • 2009
  • In the field of rocket propulsion system hydrogen peroxide has been used as mono-propellant and as the oxidizer of bi-propellants. At the beginning, hydrogen peroxide was used as mono-propellant for thrusters, but later it had been replaced by hydrazine, which has better specific impulse and storability. On the other hand, to drive turbo-pumps, hydrogen peroxide is still being utilized. As the oxidizer of bi-propellants it was used until 1970's and from 1990's hydrogen peroxide once again got back to developer's interest, because one of the recent development purposes of rocket propulsion system is low-cost and ecologically-clean. Until now the storability of hydrogen peroxide has been remarkably improved. The combination of Kerosene/$H_2O_2$ also shows similar accelerating performance to Kerosene/$LO_x$ combination because of higher propellant density and higher O/F ratio, even though the propulsion performance is not as good as the combination of Kerosene/$LO_x$. Moreover, its combustion products are much cleaner than Kerosene/$LO_x$ combination.