• Title/Summary/Keyword: 촉매산화법

Search Result 300, Processing Time 0.026 seconds

Particle Characteristics of Flame-Synthesized γ-Al2O3 Nanoparticles (화염법으로 제조된 감마-Al2O3 나노입자의 화염조건에 따른 입자특성 연구)

  • Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.509-515
    • /
    • 2012
  • In this study, ${\gamma}-Al_2O_3$ nanoparticles were synthesized by using coflow hydrogen diffusion flames. The synthesis conditions were varied with using several oxygen concentrations in the oxidizing air. The particle characteristics of the flame-synthesized $Al_2O_3$ nanoparticles were determined by examining the crystalline structure, shape, and specific surface area of the nanoparticles. The measured maximum centerline temperature of the flames ranged from 1507.8 K to 1998.7 K. The morphology and crystal structure of the $Al_2O_3$ nanoparticles were determined from SEM images and XRD analyses, respectively. The particle sizes were calculated from measured BET specific surface areas and ranged from 25 nm to 52 nm. From XRD analyses, it was inferred that a large number of the synthesized nanoparticles were ${\gamma}-Al_2O_3$ nanoparticles including ${\theta}-Al_2O_3$ nanoparticles.

Electrochemical properties of heat-treated multi-walled carbon nanotubes (열처리된 탄소나노튜브 상대전극의 전기화학적 특성 연구)

  • Lee, S.K.;Moon, J.H.;Hwang, S.H.;Kim, G.C.;Lee, D.Y.;Kim, D.H.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • We have studied the effect of heat treatment of multi-walled carbon nanotubes (MWNTs) as a counter electrode on the electro-chemical properties of dye-snsitized solar cells. MWNTs on the p-type Si substrate were synthesized by thermal chemical vapor deposition (CVD) using Fe catalysts. We prepared the two types of MWNTs samples with the different diameters. The rapid thermal annealing (RTA) treatment for the MWNTs was carried out at the growth temperature ($900^{\circ}C$) for 1 minute with $N_2$ gas atmosphere. The structural, electrical and electrochemical properties of MWNTs were investigated by field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, 2-point probe station and electrochemical impedance spectroscopy (EIS). The I(D)/I(G) ratio of heat-treated MWNTs in Raman spectra was considerably decreased. It was also found that the heat-treated MWNTs showed better redox reaction of iodide at the interface between MWNTs surface and electrolyte than that of as-grown MWNTs. The redox resistance value of heat-treated electrodes was measured to be much lower than that of as-grown electrode at the interface. As a result, the counter electrode using the heat-treated MWNTs showed better electrochemical properties.

Physical and Electrochemical Properties of Gallium Oxide (β-Ga2O3) Nanorods as an Anode Active Material for Lithium Ion Batteries (리튬이온전지용 산화갈륨 (β-Ga2O3) 나노로드 (Nanorods) 음극 활물질의 물리적.전기화학적 특성)

  • Choi, Young-Jin;Ryu, Ho-Suk; Cho, Gyu-Bon;Cho, Kwon-Koo;Ryu, Kwang-Sun;Kim, Ki-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.189-195
    • /
    • 2009
  • $\beta-Ga_{2}O_{3}$ nanorods were synthesized by chemical vapor deposition method using nickel-oxide nanoparticle as a catalyst and gallium metal powder as a source material. The average diameter of nanorods was around 160 nm and the average length was $4{\mu}m$. Also, we confirmed that the synthesis of nanorods follows the vapor-solid growth mechanism. From the results of X-ray diffraction and HR-TEM observation, it can be found that the synthesized nanorods consisted of a typical core-shell structure with single-crystalline $\beta-Ga_{2}O_{3}$ core with a monoclinic crystal structure and an outer amorphous gallium oxide layer. Li/$\beta-Ga_{2}O_{3}$ nanorods cell delivered capacity of 867 mAh/g-$\beta-Ga_{2}O_{3}$ at first discharge. Although the Li/$\beta-Ga_{2}O_{3}$ nanorods cell showed low coulombic efficiency at first cycle, the cell exhibited stable cycle life property after fifth cycle.

Removal of NOx from Graphene based Photocatalyst Ceramic Filter (그래핀 기반 광촉매 담지 세라믹필터에서 질소산화물(NOx)의 제거)

  • Kim, Yong-Seok;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.600-605
    • /
    • 2022
  • In this study, nitrogen oxide (NOx) removal experiments were performed using a graphene based ceramic filter coated with a V2O5-WO3-TiO2 catalyst. Graphene oxide (GO) was prepared by Hummer's method using graphite, and the reduced graphene oxide was produced by reducing with hydrazine (N2H4). Vanadium (V), Tungsten (W), and Titanium (Ti) were coated by the sol-gel method, and then a metal oxide-supported filter was prepared through a calcination process at 350 ℃. A NOx removal efficiency test was performed for the catalytic ceramic filters with UV light in a humid condition. When graphene oxide (GO) and reduced graphene oxide (rGO) were present on the filter, the NOx removal efficiency was superior to that of the conventional ceramic filter. Most likely, this is due to an improvement in the adsorption properties of NOx molecules on graphene coated surfaces. As the concentration of graphene increased, higher NOx removal efficiency was confirmed.

A Study of Molecular Size Distributions of Humic Acid by Photo-Oxidation and Ozonation (부식질의 광산화 및 오존산화에 있어서의 분자량 크기분포 변화 특성에 관한 연구)

  • Kim, Jong-Boo;Kim, Kei-Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.292-298
    • /
    • 2003
  • In this study, the photooxidation and ozonation of humic acid (HA) in aqueous solution were conducted and the treated HA samples at different reaction time were analyzed using ultrafiltration techniques to evaluate the change of their molecular size distributions with its DOC removal. Molecular size distribution of untreated HA showed 41.5% in higher molecular size fractions (>30,000 daltons) and 15.2% in much smaller molecular size fraction (<500 daltons). As UV irradiation time was increased, it was observed that the degradation of the large molecules of the fraction of >30,000 daltons into much smaller molecules was increased. In UV system, the HA molecules of the fraction of <500 daltons became significantly more and its percentage was increased from 35.3% (UV only irradiation) to 58.9% ($UV/TiO_2$) and 87.8% ($UV/H_2O_2$) in the presence of the photocatalysis. Otherwise, ozonation of HA produced mainly the fraction of medium molecular size ranging from 3,000 to 30,000 daltons with much lower portion (<~7%) in the fraction of <500 daltons. In ozone only system, the fraction of 30,000~10,000 daltons occupied in 41.5% at 60 min of ozonation time. In $O_3/H_2O_2$ system, the fraction of 30,000~10,000 daltons and 10,000~3,000 daltons occupied in 38.9% and 36.2% respectively. Based on these results, we suggested applicable treatment process which could be combined with $UV/H_2O_2$, $UV/TiO_2$ and $O_3$, $O_3/H_2O_2$ system for more effective removal of humic acid in water treatment.

The Synthesis and Characterization of (TBMA)Macromer Grafted Anionic Acrylic Copolymer ((TBMA)Macromer를 그라프트시킨 음이온성 아크릴 공중합체의 합성과 물성)

  • Kim, Hyoung-Ook;Noh, Si-Tae;Kang, Shin-Chun
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.627-636
    • /
    • 1993
  • Anionic acrylic resin utilizing macromer(TBMA-g-MMA) copolymer was synthesized by preparing (TBMA) macromer using anionic living polymerization, followed by graft copolymerization with MMA macromer. To control the anionic site content in graft copolymer, the relative composition((TBMA) macromer/MMA ratio) of the graft copolymer was controlled at 7/3, 10/90, 15/85, 20/80, 30/70, 40/60, 50/50 in weight content. In the course of anionic living polymerization of(TBMA) macromer, broad molecular weight distribution (1.4~1.5) was obtained by using n-butyllithium-diphenyethylene initiatior system at $-78^{\circ}C$. To introduce the double bond at the end of chain in termination step, methacryloyl chloride was reacted after insertion of benzaldehyde as capping material. Moreover, TBMA parts in graft copolymer were hydrolyzed in the presence of p-toluenesulfonic acid catalyst, and neutralization of graft copolymer with triethylamine was granted acrylic resin to anionic site. Molecular weight and molecular weight distribution of(TBMA) macromer were determined by GPC, and the hydrolysis of TBMA with neutralization of acrylic resin were determined by IR and NMR. From water dispersion and stability point of view, stable dispersion state appeared at low molecular weight(TBMA) macromer with a small TBMA content as a result of scrutiny about the relation to TBMA content and branch length for(TBMA) macromer molecular weight in graft copolymer.

  • PDF

Lipoxygenase Activity of Milled Fractions from Brown Rice (현미 도정획분의 Lipoxygenase 활성)

  • Kim, Ki-Joong;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.145-149
    • /
    • 1997
  • Lipoxygenase activity from brown rice varieties (Tongjinbyeo, Kumohbyeo and Kanchukbyeo) was investigated using spectrophotometric method. In all three varieties, there was an increase in the enzyme activity with the reaction time. Enzyme activity was tested at different concentration of the substrate. The $V_{max}\;and\;K_m$ values of Tongjin, Kumoh and Kanchukbyeo were 57.89, 19.85 and 31.38 units/mg protein and 0.054, 0.045 and 0.035 mM. The study of lipoxygenase activity at different pH levels showed that all the varieties had maximal activities around $pH\;7.0{\sim}7.6$. The enzyme activity and specific activity on milled fractions of different brown rice varieties, fraction II was superior to the other fractions and fraction IV was inferior to the other fractions. As the result of microwave heating for 0, 30, 60 and 90 sec, the enzyme activity and specific activity of all the varieties were decreased by the elapse of heating time.

  • PDF

Structural and Functional Analysis of Nitrogenase Fe Protein with MgADP bound and Amino Acid Substitutions (MgADP 결합 및 아미노산 치환 Nitrogenase Fe 단백질의 구조 및 기능 분석)

  • Jeong, Mi-Suk;Jang, Se-Bok
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.752-760
    • /
    • 2004
  • The function of the [4Fe-4S] cluster containing iron (Fe-) protein in nitrogenase catalysis is to serve as the nucleotide-dependent electron donor to the MoFe protein which contains the sites for substrate binding and reduction. The ability of the Fe protein to function in this manner is dependent on its ability to adopt the appropriate conformation for productive interaction with the MoFe protein and on its ability to change redox potentials to provide the driving force required for electron transfer. The MgADP-bound (or off) conformational state of the nitrogenase Fe protein structure described reveals mechanisms for long-range communication from the nucleotide-binding sites to control affinity of association with the MoFe protein component. Two pathways, termed switches I and II, appear to be integral to this nucleotide signal transduction mechanism. In addition, the structure of the MgADP bound Fe protein provides the basis for the changes in the biophysical properties of the [4Fe-4S] observed when Fe protein binds nucleotides. The structures of the nitrogenase Fe protein with defined amino acid substitutions in the nucleotide dependent signal transduction pathways of the Switch I and Switch II have been determined by X-ray diffraction methods. These two pathways have been also implicated by site directed mutagenesis studies, structural analysis and analogies to other proteins that utilize similar nucleotide dependent signal transduction pathways. We have examined the validity of the assignment of these pathways in linking the signals generated by MgATP binding and hydrolysis to macromolecular complex formation and intermolecular electron transfer. The results provide a structural basis for the observed biophysical and biochemical properties of the Fe protein variants and interactions within the nitrogenase Fe protein-MoFe protein complex.

Chemical Features of Solid Residues Obtained from Supercritical Water Treatment of Populus alba×glandulosa (현사시나무 목분의 초임계수 처리 공정으로부터 유래한 미분해 고형성분의 화학적 특성)

  • Kim, Kwang Ho;Eom, In Yong;Lee, Soo Min;Lee, Oh Kyu;Meier, D.;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.372-380
    • /
    • 2009
  • After supercritical water treatment of poplar wood meals (passed through 60 mesh) for 60s between 325 and $425^{\circ}C$ at the fixed pressure at $220{\pm}10atm$, some solid residues were present in the degradation products. They mainly consisted of chemically modified lignin and fibrous materials. Glucose and xylose were identified as main sugar components of fibrous materials, and the highest ratio of glucose/xylose was achieved at the highest reaction temperature. As reaction temperature was elevated, the portion of fibrous materials decreased in the solid residues, while lignin was further accumulated. The H : G : S ratio of lignin in solid residues was estimated by analytical pyrolysis. Irrespective of reaction temperatures, the H:G:S ratios were not significantly changed in the lignin in solid residues. Compared to poplar milled wood lignin (MWL), it was remarkable that H type monomers were further lowered, while portion of S type monomers increased. The amount of G type monomers were relative stable. In presence of HCl catalyst, lowering H type as well as enhancing S type was further distinguishable. According to the result of nitrobenzene oxidation (NBO), ca. 265 mg of vanillin and syringaldehyde was yielded from poplar MWL as main products. However, remarkably reduced amount of NBO products were determined from solid residues by raising operating temperature as well as by the addition of HCl catalyst. These results strongly indicate that $\beta$-O-4 linkage could be easily cleaved during supercritical water treatment, so that the lignins in the solid residues seem to be condensed phenol polymers, which are mainly formed by carbon-carbon linkages rather than $\beta$-O-4 linkage.

Comparative Studies on Mechanism of Photocatalytic Degradation of Rhodamine B with Sulfide Catalysts under Visible Light Irradiation (가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응기구에 대한 비교 연구)

  • Lee, Sung Hyun;Jeong, Young Jae;Lee, Jong Min;Kim, Dae Sung;Bae, Eun Ji;Hong, Seong Soo;Lee, Gun Dae
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2019
  • CdS and CdZnS/ZnO materials were prepared using precipitation method and used as photocatalysts for the photocatalytic degradation of rhodamine B (RhB) under visible light irradiation. The prepared photocatalysts were also characterized by XRD and UV-vis DRS. The results indicated that the photocatalysts with intended crystalline structures were successfully obtained and both the CdS and CdZnS/ZnO can absorb visible light as well as UV. The photocatalytic activities were examined with the addition of scavenger for various active chemical species and the difference of reaction mechanisms over the catalysts were discussed. The $CH_3OH$, KI and p-benzoquinone were used as scavengers for ${\cdot}OH$ radical, photogenerated positive hole and ${\cdot}O_2{^-}$ radical, respectively. The CdS and CdZnS/ZnO showed different photocatalytic degradation mechanisms of RhB. It can be postulated that ${\cdot}O_2{^-}$ radical is the main active species for the reaction over CdS photocatalyst, while the photogenerated positive hole for CdZnS/ZnO photocatalyst. As a result, the predominant reaction pathways over CdS and CdZnS/ZnO photocatalysts were found to be the dealkylation of chromophore skeleton and the cleavage of the conjugated chromophore structure, respectively. The above results may be mainly ascribed to the difference of band edge potential of conduction and valence bands in CdS, CdZnS and ZnO semiconductors and the redox potentials for formation of active chemical species.