• Title/Summary/Keyword: 촉매금속

Search Result 811, Processing Time 0.027 seconds

VOCs Oxidation Characteristics of Transition $Metals/\gamma-Al_2O_3$ Catalyst (전이금속/$\gamma-Al_2O_3$ 촉매의 VOCs 산화특성)

  • Kim, Bong-Soo;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.444-451
    • /
    • 2007
  • Catalytic oxidation characteristics of benzene as a VOC was investigated using a fixed bed reactor system over transition $metals/\gamma-Al_2O_3$ catalysts. As transition metals, eight metals including copper, nickel, manganese, iron etc. were adopted. The parametric tests were conducted at the reaction temperature range of $200\sim500^{\circ}C$, benzene concentration of $1,000\sim3,000$ ppm, and space velocity range of $5,000\sim60,000\;hr^{-l}$. The property analyses such as BET, SEM, XRD and the conversions of catalytic oxidation of VOC were examined. The experimental results showed that the conversion was increased with decreasing VOC concentration and space velocity. It was also found that $Cu/\gamma-Al_2O_3$ catalyst calcinated at $500^{\circ}C$ showed the highest activity for the oxidation of benzene and 15% metal loading was the optimum impregnation level.

Non-Pt transition metal electrode catalyst for Oxygen Reuction Reaction of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지의 산소환원반응을 위한 비백금계 전이금속 전극 촉매)

  • Kim, Jy-Yeon;Lee, Sang-Beom;Park, Kyung-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.383-385
    • /
    • 2009
  • 비백금계 코발트 전이금속 촉매를 탄소지지체에 담지한 뒤, 암모니아 분위기에서 $500^{\circ}C$에서 3시간 동안 열처리하는 과정을 통해 코발트 질화물 촉매를 제조했다. 제조된 촉매들의 구조와 형태를 각각 XRD, HE-TEM등을 통해 분석하였고, 전위 측정기를 이용한 CV, LSV 결과로부터 촉매의 전기화학적 산소 환원특성을 분석하여, 기존의 연료전지 양극 촉매로 사용되는 고가의 백금촉매를 대체하기 위한 비백금계로서의 가능성을 확인하였다.

  • PDF

석탄 촤-수증기 가스화반응에서 알카리 금속염과 전이금속염 혼합물의 촉매활성

  • 이운재;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.9-14
    • /
    • 1994
  • 알카리금속염 (K$_2$CO$_3$, $K_2$SO$_4$). 알카리 토금속염 (Ba(NO$_3$)$_2$), 철족금속염(Ni(NO$_3$)$_2$, FeSO$_4$) 으로 이루어진 여러가지 혼합물들이 반응온도 700~85$0^{\circ}C$ 하의 촤-수증기 가스화반응에서 나타내는 촉매활성을 열천칭 반응기를 사용하여 측정하였다. 비촉매 가스화반응에서 초기반응성은 수증기 분압에 비례하였다. 촉매 가스화반응에서 단일염 촉매의 경우 $K_2$CO$_3$ 가 가장 큰 활성을 나타내었으며, 다른 염들은 낮은 활성을 보였다. 혼합염의 경우 $K_2$SO$_4$에 철족염을 부가함에 따라 반응속도가 향상되었으며, $K_2$SO$_4$+Ni(NO$_3$)$_2$가 가장 큰 촉매활성을 나타내었다. $K_2$SO$_4$와 Ni(NO$_3$)$_2$ 의 촉매 활성은 담지량에 따라 증가하며, 석탄의 등급에 따라 감소하였다. $K_2$SO$_4$와 Ni(NO$_3$)$_2$의 혼합비는 같은 몰비로 혼합하였을때 가장 큰 활성을 나타내었다.

  • PDF

Catalytic Oxidation of Methane Using the Manganese Catalysts (망간촉매를 이용한 메탄의 산화반응)

  • Peng, Meimei;Lee, Joo-Bo;Lee, Sung-Yong;Jeong, Ui-Min;Han, Seung-Dong;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1233-1236
    • /
    • 2010
  • 본 연구에서는 메탄을 물질로 산화실험을 수행하였다. 메탄의 발화온도가 탄화수소 중에 가장 높으며, 대부분의 전이금속촉매 활성온도가 가장 높게 나타나는 물질이므로 메탄의 연소가 일어날 경우 대부분의 탄화수소류는 연소가 일어날 수 있으므로 메탄의 산화반응을 연구하였다. 메탄의 산화를 위한 전이금속 촉매중 망간을 산화물형태로 $Al_2O_3$, $TiO_2$에 담지하여 메탄에 대한 활성능을 측정하였으며, 조촉매로 금속산화물을 이용하여 활성능의 변화를 연구하였다. 또한 자연에 존재하는 천연망간광석과 금속산화물을 담지하여 최적의 메탄에 대한 활성능을 지닌 촉매를 선별하였다. 조촉매로는 Ce, Sn, Ni, Co, Mo 등을 이용하였다. 또한 본 연구에서는 촉매 제조는 과잉용액함침법을 사용하여 담지체에 촉매물질을 분산하였으며, 온도와 유량에 대한 각 조성 촉매의 활성능을 측정하여 활성화에너지 및 $T_{50}$, $T_{90}$을 도출하였다.

  • PDF

Hydrodesulfuriztion of Thiophene over Neodymium Added Nickel Catalysts (네오디뮴이 첨가된 니켈 촉매의 티오펜 탈황 반응)

  • Moon, Young-Hwan;Ihm, Son-Ki
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.913-924
    • /
    • 1996
  • In this study HDS(hydrodesulfurization) of thiophene was researched over nickel catalysts added with small amounts of neodymium which were prepared by different methods such as unsupported coprepricipitated NdNi catalysts, unsupported intermetallic $NdNi_5$ catalysts, and carbon supported NdNi catalyst. The HDS activity was remarkably increased when a small amounts of neodymium was added to unsupported coprecipitated Ni catalysts. Thus it was known that the role of Nd is important in HDS of thiophene of Ni catalysts. For the case of unsupported intermetallic $NdNi_5$, the intermetallic crystallinity was destroyed to oxide and sulfide after calcination and presulfidation respectively. The HDS activity of thiophene can be explained by surface area of unsupported catalysts. And Nd acts like as structural promoter keeping the high surface area of unsupported catalysts. The HDS activity was increased by each ten times based on 1 gr. of nickel in the order of unsupported intermetallic $NdNi_5$, unsupported coprecipitated NdNi, and carbon supported NdNi catalysts according to different preparation method of catalysts.

  • PDF

Aldol Condensation over Acid-Base Bifunctional Metal-Organic Framework Catalysts (산, 염기 이원기능 금속-유기 구조체 촉매를 이용한 알돌 축합반응)

  • Chung, Young-Min
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • Various types of MOFs (metal-organic frameworks) were prepared via hydrothermal and post-grafting methods and applied as catalysts for the synthesis of jasminaldehyde, one of the representative perfume intermediates, by Aldol condensation of benzaldehyde with heptanal. Although both acid and base sites could catalyze the reaction, the catalytic performance was strongly dependent on the physical properties as well as the nature of functionalization on MOFs. While the use of sulfonated MOF catalysts led to decrease of jasminaldehyde selectivity regardless of MOFs used, the selectivity change was found to rely on the MOF types in the case of the amine-functionalization. Among the catalysts tested, MIL-101 shows the best catalytic performance, which may suggest that MIL-101 has suitable acid properties to promote the Aldol condensation and the large pore of MIL-101 is also advantageous to alleviate the diffusion problem of bulky products.

Decomposition of Toluene over Transition Metal Oxide Catalysts (전이금속 산화물 촉매를 이용한 톨루엔 분해)

  • Cheon, Tae-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2005
  • Toluene, which is emitted from textile process, is considered as an important hazardous air pollutant. In this study, the catalytic activity of transition metal oxides(Cu, Mn, V, Cr, Co, Ni, Ce, Sn, Fe, Sr, Cs, Mo, La, W, Zn)/${\gamma}-Al_2O_3$ catalysts was investigated to carry out the complete oxidation of toluene. The metal catalysts were characterized by XRD-ray diffraction), FE-SEM(Field Emission Scanning Electron Micrograph), BET(Brunauer Emmett Teller) method and TPR(Temperature Programmed Reduction). Among the catalysts, Cu/${\gamma}-Al_2O_3$ was highly promising catalyst for the oxidation of toluene. From the BET results, it seems that the catalytic activity is not correlated to the specific surface area. XRD results indicated that most of catalysts exist as amorphous phase. From the FE-SEM results, it was observed that copper on ${\gamma}-Al_2O_3$ surface was well dispersed among catalysts. The catalytic activity for the toluene oxidation could be explained with that metal oxide catalyst was dispersed well over supports and was attributed to reduction activity in surface of catalysts.

Growth of Carbon Nanotubes on Different Catalytic Substrates (촉매금속(Ni-Cu)의 적층 증착법에 의한 탄소나노튜브의 성장)

  • 배성규;이세종;조성진;이득용
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.247-252
    • /
    • 2004
  • 노튜브의 길이는 급격히 증가하였지만 촉매금속의 적층방법에 따른 탄소나노튜브의 성장 형태는 큰 차이가 없었다. 특히, ICBD 방법에 의해 Ni 촉매금속을 증착한 경우 다른 방법에 비하여 직선적인 탄소나노튜브가 관찰되었다. ^x Carbon nanotubes were grown on SiO$_2$/Si substrates by applying $C_2$H$_2$ gas through chemical vapor deposition process. It was found that carbon nanotubes were grown successfully on the substrates with catalytic films under 20 $\AA$ total thickness. The increase in reaction temperature from 50$0^{\circ}C$ to 80$0^{\circ}C$ resulted in longer carbon nanotube, but there was no clear tendencies with different types of catalytic layers. It was evident that carbon nanotubes became more straight on the substrate with Ni catalytic film produced by ICBD method.

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

Catalytic synthesis and properties of β-Ga2O3 nanowires by metal organic chemical vapor deposition (MOCVD를 이용한 금속 촉매 종류에 따른 β-Ga2O3 나노 와이어의 제작과 특성)

  • Lee, Seunghyun;Lee, Seoyoung;Jeong, Yongho;Lee, Hyojong;Ahn, Hyungsoo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Catalytic synthesis and properties of ${\beta}-Ga_2O_3$ nanowires grown by metal organic chemical vapor deposition are reported. Au, Ni and Cu catalysts were suitable for the growth of $Ga_2O_3$ nanowires under our experimental conditions. The $Ga_2O_3$ nanowires grown by using Au, Ni and Cu catalysts showed different growth rates and morphologies in each case. We found the $Ga_2O_3$ nanowires were grown by the Vapor-Solid (VS) process when Ni was used as a catalyst while the Vapor-Liquid-Solid (VLS) was a dominant process in case of Au and Cu catalysts. Also, we found nanowires showed different optical properties depend on catalytic metals. On the other hand, for the cases of Ti, Sn and Ag catalysts, nanowires could not be obtained under the same condition of Au, Cu and Ni catalytic synthesis. We found that these results are related to the different characteristics of each catalyst, such as, melting points and phase diagrams with gallium metal.