• Title/Summary/Keyword: 초해상

Search Result 301, Processing Time 0.027 seconds

A Survey on Deep Learning-based Image Downsampling (딥러닝 기반 영상 다운샘플링 기술 분석)

  • Chung, Jae Ryun;Jung, Seung-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.235-236
    • /
    • 2019
  • 본 논문에서는 초해상도, 압축 열화 제거 등 영상 화질 복원 연구에서 영상의 다운샘플링에 딥러닝을 적용한 연구들에 대해 소개한다. 첫 번째 연구는 두 개의 컨볼루셔널 신경망과 영상 압축 코덱을 이용하여 압축 영상의 화질을 향상시켰다. 두 번째 연구는 초해상도 문제를 해결함에 있어 다운샘플링 역시 딥러닝을 통해 학습하여 복원 영상의 화질을 향상시켰다. 두 연구를 통해 영상 화질 개선 문제 해결에 있어 적절한 딥러닝 학습 방법을 영상 다운샘플링에 적용하여 좋은 결과를 얻을 수 있다는 것을 확인할 수 있다.

  • PDF

An Image Processing Speed Enhancement in a Multi-Frame Super Resolution Algorithm by a CUDA Method (CUDA를 이용한 초해상도 기법의 영상처리 속도개선 방법)

  • Kim, Mi-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.663-668
    • /
    • 2011
  • Although multi-frame super resolution algorithm has many merits but it demands too much calculation time. Researches have shown that image processing time can be reduced using a CUDA(Compute unified device architecture) which is one of GPGPU(General purpose computing on graphics processing unit) models. In this paper, we show that the processing time of multi-frame super resolution algorithm can be reduced by employing the CUDA. It was applied not to the whole parts but to the largest time consuming parts of the program. The simulation result shows that using a CUDA can reduce an operation time dramatically. Therefore it can be possible that multi-frame super resolution algorithm is implemented in real time by using libraries of image processing algorithms which are made by a CUDA.

Image Super-Resolution Using Deep Convolutional Neural Networks Based on Residual Blocks (잔차 블록 기반의 깊은 합성곱 신경망을 통한 단일 영상 초해상도 복원)

  • Kim, Ingu;Yu, Songhyun;Jeong, Jaechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.62-65
    • /
    • 2018
  • 신경망은 깊어질수록 gradient vanishing/exploding과 같은 네트워크가 불안정해지는 문제가 발생 한다. 잔차 블록을 이용하여 이러한 문제를 해결 할 수 있다. 본 논문에서는 영상 인식 분야에서 훌륭한 성능을 보여준 잔차 블록 기반의 깊은 합성곱 신경망을 통한 단일 영상 초해상도 복원 기법을 제안 한다. 제안한 알고리듬은 EDSR에 사용된 잔차 블록을 다양한 크기의 합성곱 연산을 통해 영상의 특징들을 다르게 분석하도록 수정하고 VDSR과 비슷한 수준의 복잡도로 구성하여 향상된 성능을 얻었다. 실험 결과, VDSR에 비해 PSNR이 최대 0.1dB까지 증가했다.

  • PDF

SqueezeNet based Single Image Super Resolution using Knowledge Distillation (SqueezeNet 기반의 지식 증류 가법을 활용한 초해상화 기법)

  • Seo, Yu lim;Kang, Suk-Ju
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.226-227
    • /
    • 2020
  • 근래의 초해상화 (super-resolution, SR) 연구는 네트워크를 깊고, 넓게 만들어 성능을 높이는데 주를 이뤘다. 그러나 동시에 높은 연산량과 메모리 소비량이 증가하는 문제가 발생하기 때문에 이를 실제로 하드웨어로 구현하기에는 어려운 문제가 존재한다. 그렇기에 우리는 네트워크 최적화를 통해 성능 감소를 최소화하면서 파라미터 수를 줄이는 네트워크 SqueezeSR을 설계하였다. 또한 지식 증류(Knowledge Distillation, KD)를 이용해 추가적인 파라미터 수 증가 없이 성능을 높일 수 있는 학습 방법을 제안한다. 또한 KD 시 teacher network의 성능이 보다 student network에 잘 전달되도록 feature map 간의 비교를 통해 학습 효율을 높일 수 있었다. 결과적으로 우리는 KD 기법을 통해 추가적인 파라미터 수 증가 없이 성능을 높여 다른 SR네트워크 대비 더 빠르고 성능 감소를 최소화한 네트워크를 제안한다.

  • PDF

A Study on the Video Quality Improvement of National Intangible Cultural Heritage Documentary Film (국가무형문화재 기록영상 화질 개선에 관한 연구)

  • Kwon, Do-Hyung;Yu, Jeong-Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.439-441
    • /
    • 2020
  • 본 논문에서는 국가무형문화재 기록영상의 화질 개선에 관한 연구를 진행한다. 기록영상의 화질 개선을 위해 SRGAN 기반의 초해상화 복원영상 생성 프레임워크의 적용을 제안한다. Image aumentation과 median filter를 적용한 데이터셋과 적대적 신경망인 Generative Adversarial Network (GAN)을 기반으로 딥러닝 네트워크를 구축하여 입력된 Low-Resolution 이미지를 통해 High-Resolution의 복원 영상을 생성한다. 이 연구를 통해 국가무형문화재 기록영상 뿐만 아니라 문화재 전반의 사진 및 영상 기록 자료의 품질 개선 가능성을 제시하고, 영상 기록 자료의 아카이브 구축을 통해 지속적인 활용의 기초연구가 되는 것을 목표로 한다.

  • PDF

Super Resolution Reconstruction from Multiple Exposure Images (노출이 다른 다수의 입력 영상을 사용한 초해상도 영상 복원)

  • Lee, Tae-Hyoung;Ha, Ho-Gun;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • Recent research efforts have focused on combining high dynamic range imaging with super-resolution reconstruction to enhance both the intensity range and resolution of images. The processes developed to date start with a set of multiple-exposure input images with low dynamic range (LDR) and low resolution (LR), and require several procedural steps: conversion from LDR to HDR, SR reconstruction, and tone mapping. Input images captured with irregular exposure steps have an impact on the quality of the output images from this process. In this paper, we present a simplified framework to replace the separate procedures of previous methods that is also robust to different sets of input images. The proposed method first calculates weight maps to determine the best visible parts of the input images. The weight maps are then applied directly to SR reconstruction, and the best visible parts for the dark and highlighted areas of each input image are preserved without LDR-to-HDR conversion, resulting in high dynamic range. A new luminance control factor (LCF) is used during SR reconstruction to adjust the luminance of input images captured during irregular exposure steps and ensure acceptable luminance of the resulting output images. Experimental results show that the proposed method produces SR images of HDR quality with luminance compensation.

Super-resolution based on multi-channel input convolutional residual neural network (다중 채널 입력 Convolution residual neural networks 기반의 초해상화 기법)

  • Youm, Gwang-Young;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.37-39
    • /
    • 2016
  • 최근 Convolutional neural networks(CNN) 기반의 초해상화 기법인 Super-Resolution Convolutional Neural Networks (SRCNN) 이 좋은 PSNR 성능을 발휘하는 것으로 보고되었다 [1]. 하지만 많은 제안 방법들이 고주파 성분을 복원하는데 한계를 드러내는 것처럼, SRCNN 도 고주파 성분 복원에 한계점을 지니고 있다. 또한 SRCNN 의 네트워크 층을 깊게 만들면 좋은 PSNR 성능을 발휘하는 것으로 널리 알려져 있지만, 네트워크의 층을 깊게 하는 것은 네트워크 파라미터 학습을 어렵게 하는 경향이 있다. 네트워크의 층을 깊게 할 경우, gradient 값이 아래(역방향) 층으로 갈수록 발산하거나 0 으로 수렴하여, 네트워크 파라미터 학습이 제대로 되지 않는 현상이 발생하기 때문이다. 따라서 본 논문에서는 네트워크 층을 깊게 하는 대신에, 입력을 다중 채널로 구성하여, 네트워크에 고주파 성분에 관한 추가적인 정보를 주는 방법을 제안하였다. 많은 초해상화 기법들이 고주파 성분의 복원 능력이 부족하다는 점에 착안하여, 우리는 네트워크가 고주파 성분에 관한 많은 정보를 필요로 한다는 것을 가정하였다. 따라서 우리는 네트워크의 입력을 고주파 성분이 여러 가지 강도로 입력되도록 저해상도 입력 영상들을 구성하였다. 또한 잔차신호 네트워크(residual networks)를 도입하여, 네트워크 파라미터를 학습할 때 고주파 성분의 복원에 집중할 수 있도록 하였다. 본 논문의 효율성을 검증하기 위하여 set5 데이터와 set14 데이터에 관하여 실험을 진행하였고, SRCNN 과 비교하여 set5 데이터에서는 2, 3, 4 배에 관하여 각각 평균 0.29, 0.35, 0.17dB 의 PSNR 성능 향상이 있었으며, set14 데이터에서는 3 배의 관하여 평균 0.20dB 의 PSNR 성능 향상이 있었다.

  • PDF

Image Resolution Enhancement by Improved S&A Method using POCS (POCS 이론을 이용한 개선된 S&A 방법에 의한 영상의 화질 향상)

  • Yoon, Soo-Ah;Lee, Tae-Gyoun;Lee, Sang-Heon;Son, Myoung-Kyu;Kim, Duk-Gyoo;Won, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1392-1400
    • /
    • 2011
  • In most digital imaging applications, high-resolution images or videos are usually desired for later image processing and analysis. The image signal obtained from general imaging system occurs image degradation during the process of image acquirement caused by the optics, physical constraints and the atmosphere effects. Super-resolution reconstruction, one of the solution to address this problem, is image reconstruction technique that produces a high-resolution image from several low-resolution frames in video sequences. In this paper, we propose an improved super-resolution method using Projection onto Convex Sets (POCS) method based on Shift & Add (S&A). The image using conventional algorithms is sensitive to noise. To solve this problem, we propose a fusion algorithm of S&A and POCS. Also we solve the problem using BLPF (Butterworth Low-pass Filter) in frequency domain as optical blur. Our method is robust to noise and has sharpness enhancement ability. Experimental results show that the proposed super-resolution method has better resolution enhancement performance than other super-resolution methods.