• Title/Summary/Keyword: 초음파 진동 가공

Search Result 65, Processing Time 0.019 seconds

FEA and Experiment Investigation on the Friction Reduction for Ultrasonic Vibration Assisted Deep Drawing (초음파 진동 딥 드로잉 공정에서의 마찰감소효과 분석을 위한 유한요소해석 및 실험)

  • Kim, S.W.;Son, Y.G.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.413-418
    • /
    • 2014
  • The current study presents experimental and numerical results on the effect of ultrasonic vibrations on a cylindrical cup drawing of a cold rolled steel sheet(SPCC). An experimental apparatus, which can superimpose high frequency oscillations during deep drawing, was constructed by installing on the tooling ultrasonic vibration generators consisting of a piezoelectric transducer and a resonator. Conventional and vibration-assisted cylindrical deep drawing tests were conducted for various drawing ratios, and the limiting drawing ratios(LDR) for both methods were compared. To evaluate quantitatively the contribution from the ultrasonic vibrations to the reduction of friction between tools and material finite element analyses were conducted. Through a series of parametric analyses, the friction coefficients, which minimized the differences of punch load data between the experiments and simulations, were determined. The results show that the application of ultrasonic vibration effectively improves the LDR by reducing the friction between the tools and the material.

The Development of a new High Working Accuracy by Ultrasonic Vibration Cutting (초음파진동절삭을 이용한 새로운 고정밀가공법의 개발)

  • ;Shin, Bong-Seok
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 1977
  • So far, high accuracy in-process sensors have been used for controlling the cutting tool, but the method followed in this new system is guite different form previous processes. In this system, after the rough cut the mark indication the pasition of the finished size in put on the cutting surface of the workpiece by ultrasonic or vibration cutting. The cutting is then continued until the mark just disappears, This position being observed by the used of a simple in-proces sensor, The in-prosess sensor in used only to detect the existence or dis apperance of the mark.

A Study on the Improvement of Cutting Precision by the Ultrasonic Vibration Cutting (초음파 진동 절삭에 의한 가공정도 향상에 관한 연구)

  • Kang, Jong-Pyo;Kim, Byong-Hwa;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.69-77
    • /
    • 1991
  • The ultimate target of machining process is to get both precision and productivity simultaneously. To obtain these effects, many kinds of machining methods have been considered and various research effort has been made for a long time. Ultrasonic vibration cutting method is one of these methods. When the ultrasonic vibration is applied on the workpiece or the tool, the cutting tool makes periodical contact with workpiece due to vibration. The cutting is performed by vibrating impact force while the cutting tool contacts the workpiece, and it makes the displacement of both the tool and workpiece minimum in three force component (principal, axial, radial force) direction during the cutting process. So the cutting precision is better than conventional cutting method. The main results that obtained by the expriments of ultrasonic vibration cutting are as follows; 1. The value of roundness is about 1.4 ~ 2.5 [${\mu}m$] and this value is three or four times less than that of conventional cutting. 2. The value of surface roughness is about 1.2~2.2 [${\mu}m$] and this value is the two or three times less than that of conventional cutting.

  • PDF

Characterization of Acousto-ultrasonic Signals for Stamping Tool Wear (프레스 금형 마모에 대한 음-초음파 신호 특성 분석)

  • Kim, Yong-Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.386-392
    • /
    • 2009
  • This paper reports on the research which investigates acoustic signals acquired in progressive compressing, hole blanking, shearing and burr compacting process. The work piece is the head pin of the electric connector, whose raw material is the preformed steel bar. An acoustic sensor was set on the bed of hydraulic press. Because the acquired signals include the dynamic characteristics generated for all the processes, it is required to investigate signal characteristics corresponding to unit process. The corresponding dynamic characteristics to the respective process were first studied by analyzing the signals respectively acquired from compressing, blanking and compacting process. The combined signals were then periodically analyzed from the grinding to the grinding in the sound frequency domain and in the ultrasonic wave. The frequency of around 9 kHz in the sound frequency domain was much correlated to the tool wear. The characteristic frequency in the acoustic emission domain between 100 kHz and 500 kHz was not only clearly observed right after tool grinding but its amplitude was also related to the wear. The frequency amplitudes of 160 kHz and 320 kHz were big enough to be classified by the noise. The noise amplitudes are getting bigger, and their energy was much bigger as coming to the next regrinding. The signal analysis was based on the real time data and its frequency spectrum by Fourier Transform. As a result, the acousto-ultrasonic signals were much related to the tool wear progression.

Evaluation of cavitation characteristics for anodized 5000 series Al alloy with various sealing treatment in sea water (양극산화 기술이 적용된 5000계열 알루미늄 합금의 다양한 실링처리에 따른 해수 내 캐비테이션 특성 평가)

  • Jo, Chung-Hui;Park, Il-Cho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.146-146
    • /
    • 2016
  • 최근 국민 소득향상과 더불어, 여가시간 증가에 따라 해양레저에 대한 관심이 크게 높아지고 있으며, 그에 따라 레저용 선박 수요도 증가하고 있다. 기존 국내 소형 선박의 경우 FRP(fiber-reinforced plastic)재료로 선박을 건조해 왔다. 그러나 해양환경 규제 강화로 FRP 선박의 건조가 감소하고 있으며, 친환경 선박에 대한 필요성이 대두되고 있다. 따라서 FRP재료를 대체하는 선박용 재료로 친환경적이고 가벼운 소재인 알루미늄 합금 재료가 선박건조 분야에서 각광을 받고 있다. 특히 5000계열 Al-Mg 합금은 가공성과 용접성이 우수하여 주로 구조용으로 많이 사용되고 있으나 경량화에 따른 빠른 선속이 유체충격을 증가시켜 선체에 캐비테이션 손상을 일으킬 수 있다. Al-Mg 합금의 경우에 부식성이 대단히 큰 해양환경에서 부식과 캐비테이션 침식이 복합적으로 일어나면 손상이 빠르게 증가되는 경향을 나타내어 선박의 수명을 현저히 단축시켜 경제적인 손실을 초래한다. 따라서 본 연구에서는 해수 내에서 Al-Mg 합금의 캐비테이션 저항성을 향상시키기 위해 알루미늄 합금 표면에 내식성 뿐만 아니라 경도 및 내마모성 등의 기계적 특성이 우수한 산화피막을 형성시키는 양극산화 기술을 적용하고, 다양한 봉공처리(sealing)방법에 따른 캐비테이션 특성을 평가하였다. 캐비테이션 실험은 압전(piezoelectric) 효과를 이용한 진동발생 장치를 사용하여 $30{\mu}m$ 진폭으로 일정하게 유지하였으며, 시편과 혼 팁 사이의 간격은 1mm로 하였다. 캐비테이션 실험 후에는 시편을 초음파 세척하여 진공 건조기에서 24시간 이상 건조한 후 정밀저울로 무게를 측정하였으며, 표면 손상 형상을 분석하기 위해 주사전자현미경(SEM)과 3D현미경을 이용하여 관찰하였다.

  • PDF