• Title/Summary/Keyword: 초음파 진동자

Search Result 140, Processing Time 0.021 seconds

Walking Assistance System for Visually Impaired People using Vultiple sensors (다중 센서를 이용한 시각장애인 보행 보조 시스템)

  • Park, Hye-Bin;Ko, Yong-Jin;Lee, Seung-Min;Jang, Ji-Hoon;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.533-538
    • /
    • 2017
  • In this thesis, the ambulatory aid mechanism was implemented so that blind people could be safer at risk of walking outdoors. Using ultrasonic sensors, the obstacles can be detected when the distance between the obstacle is within 50 cm of the obstacle. If the light sensor becomes less than 25 lux, the LED will automatically turn on and help the safety of the visually impaired and the security of sight of the peripheral walkers. Color recognition sensors increase the rate of recognition of yellow color by the detection distance is 1cm, it vibrated when yellow light was detected. Using GPS with 7.3 m of error range, the guardian was able to check the location of the visually impaired.

The Ultrasonic Type Wind Sensor with Piezoelectric Actuator (압전진동자를 이용한 초음파형 풍향풍속계)

  • Lee, Seon-Gil;Moon, Young-Soon;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.292-296
    • /
    • 2013
  • The ultrasonic wind sensor that pass through the air, beating the delivery of ultrasonic wind speed increases or decreases by the physical characteristics of the wind speed and the direction of the sensor, the transmission and reception of ultrasonic time difference measured by a two-axis vector wind and wind speed measured by calculating a device that converts the digital signal is Anemometer and wind direction meteorological facilities management, management of the ship sail used for various purposes, including, but used the existing 3-cup (mechanical) anemometer wind rotor caused by mechanical wear parts replacement due to the short-term, the reliability of the product is low, parts replacement, and according to the characteristics caused the car, there is a problem in high maintenance costs. In addition, because the bearings use of the marine environment and the cryogenic environment was constrained. In this study, the excellent long-term reliability, using ultrasonic-type environment that is not constrained to produce wind anemometer located $90^{\circ}$ conformal road using four piezoelectric sensors were fabricated structures, the piezoelectric oscillator circuit produces a rash and receiving transmit and receive speeds the car through the two-axis vector calculation to measure wind velocity processor firmware programming, and its characteristics were tested.

Classification of Organs Using Impedance of Ultrasonic Surgical Knife to improve Surgical Efficiency (초음파 수술기의 수술 효율성 향상을 위한 진동자 임피던스 측정에 따른 조직 분류 연구)

  • Kim, Hong Rae;Kim, Sung Chun;Kim, Kwang Gi;Kim, Young-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.141-147
    • /
    • 2013
  • Ultrasonic shears is currently in wide use as an energy device for minimal invasive surgery. There is an advantage of minimizing the carbonization behavior of the tissue due to the vibrational energy transfer system of the transducer by applying a piezoelectric ceramic. However, the vibrational energy transfer system has a pitfall in energy consumption. When the movement of the forceps is interrupted by the tissue, the horn which transfers the vibrational energy of the transducer will be affected. A study was performed to recognize different tissues by measuring the impedance of the transducer of the ultrasonic shears in order to find the factor of energy consumption according to the tissue. In the first stage of the study, the voltage and current of the transducer connecting portion were measured, along with the phase changes. Subsequently, in the second stage, the impedance of the transducer was directly measured. In the final stage, using the handpiece, we grasped the tissue and observed the impedance differences appeared in the transducer To verify the proposed tissue distinguishing method, we used the handpiece to apply a force between 5N and 10N to pork while increasing the value of the impedance of the transducer from 400 ${\Omega}$.. It was found that fat and skin tissue, tendon, liver and protein all have different impedance values of 420 ${\Omega}$, 490 ${\Omega}$, 530 ${\Omega}$, and 580 ${\Omega}$, respectively. Thus, the impedance value can be used to distinguish the type of tissues grasped by the forceps. In the future study, this relationship will be used to improve the energy efficiency of ultrasonic shears.

Characteristics of Linear Ultrasonic Motor Using $L_1-B_4$ Mode Unimorph-TyPe and Bimorph-Type Vibrator ($L_1-B_4$ 모드 유니몰프형과 바이몰프형 진동자를 이용한 선형 초음파 모터의 특성)

  • Kim, Beom-Jin;Jeong, Dong-Seok;Kim, Tae-Yeol;Park, Tae-Gon;Kim, Myeong-Ho;Uchino, Kenji
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.427-433
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, and the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramic element as a driving element. That is,$L_1-B_4$ linear ultrasonic motor can be constructed by a multi-mode vibrator of longitudinal and bending modes. Linear ultrasonic motors are based on an elliptical motion on the surface elastic body, such as bar or plates. In general, the natural resonance frequency of the stator is used as a driving frequency of the motor which provides a large elliptical motion. The corresponding eigenmode of one resonance frequency can be excited twice at the same time with a Phase shift of 90 degrees in space and time. And the rotation can be reversed by changing the phase between the two signals from sin$\omega$t to cos$\omega$t. Moreover, the tangential force pushes the slider(rotor) and, therefore, determines the thrust and speed of the motor. The experimental results of fabrication motors, bimorph-tyPe motor showed more excellent than unimorph-type. The maximum speed of TBL-200, TBL-300, TBL-400, TBL -220, TBL-310 and TBL-420 motors were 0.12, 0.37, 0.39, 0.14, 0.55 and $0.60ms6{-1}$, respectively. And the efficiency were reported 1.15, 7.9, 6.6, 2.36, 10.1 and 16.5%, respectively. That time, output thrust of the motor was a strong(1~2N) and the weight of stator was a lightness(5~7g).

  • PDF

The Control Method of Rehabilitation Assistance Mobile Robot Using Force-Reflection Joystick (힘 반향 조이스틱을 이용한 재활보조용 이동 로보트의 제어 기법)

  • 이응혁;권오상;김병수;민홍기;장원석;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.447-456
    • /
    • 1997
  • When the disabled is operating a rehabilitation assisting system with a joystick by himself, unlike in the case of a normal person, tremor with joystick control or instant miscontrol can often occur. If these misoperations should be directly relayed to the system, shaking or malfunction of the mobile rehabilitation assisting system might be the result. The safety of the disabled is of prime concern. To solve this problem, that is, to prevent the miscontrol of the disabled operator and avoid crashes into his or her surroundings, we propose the force-reflection locomotion algorithm with the joystick. This method uses ultrasonic sensors to measure the distance between the object and mobile robot. Based on the reception of sensory data, the necessary torque is applied via the joystick to the attatched motor. To confirm the effectiveness of the proposed method, the subjects on the reflected force by the dynamic characteristics of the joystick and the reflected force by the distance information are tested Even though there are some differences in human dexterity, we confirmed the fact that the information from the obstacles was relayed to the operator via the joystick and resulted in an improved operational performance and safety level with regard to those obstacles.

  • PDF

Fabrication of 1-3 Piezo-composites with a "Dice & Fill" Method and Characterization of Their Piezoelectric Properties as a Function of Lateral Spatial Scale ("Dice와 fill" 방식을 이용한 1-3 압전복합재의 제조와 횡방향 단위 크기에 따른 압전특성 평가)

  • Kim, Young-Deog;Kim, Kwang-Il;Jeong, Woo-Cheol;Kim, Heung-Rak;Kim, Dong-Su
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.354-360
    • /
    • 2002
  • The piezoelectric composites had many advantages in comparison with conventional piezoelectric ceramics and piezopolymers for ultrasonic transducers used in NDT and in medical ultrasionic imaging. The electromechanical coupling coefficient should be high and the acoustic impedance should be low in these applications. However, the cross-coupling with spurious oscillations caused by laterally running plate waves exhibited complex motions in the surface of piezoelectric composites with coarse lateral spatial scale. The thickness mode electromechanical coupling coefficient of 1-3type of piezoelectric compoistes were 0.36 to 0.64, and the acoustic impedance of them were 9.8 to 22.7 MRayl. The lateral resonance frequency of 1-3 type piezoelectric composites shifted to high frequency region with decreasing lateral spatial scale.

Effect of Nanotube Length on Rheological Characteristics of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites Prepared by Latex Technology (라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향)

  • Woo, Dong-Kyun;Noh, Won-Jin;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.534-539
    • /
    • 2010
  • Polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via latex technology and the effect of nanotube length on rheological properties were investigated. Monodisperse PS particle was synthesized by the emulsifier-free emulsion polymerization and two types of MWCNTs were used after surface modification to improve dispersion state and to remove impurities. Final nanocomposites were prepared by the freeze-drying process after dispersing the PS particles and the surface-modified MWCNTs in a ultrasonic bath. The effects of MWCNT content and nanotube length on rheological properties were evaluated by imposing the small-amplitude oscillatory shear flow. The PS/MWCNT nanocomposites showed that rheological properties were enhanced as the amount and length of MWCNT increased. It is speculated that the rheological characteristics of nanocomposites change from liquid-like to solid-like as the MWCNT amount increases, and the critical concentration to achieve network structure decreases as the nanotube length increases.

Conductivity Improvement of Polyaniline/Nylon 6 Fabrics (폴리아닐린/나일론 6 복합직물의 전기 전도도 향상 연구)

  • 오경화;성재환;김성훈
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.673-681
    • /
    • 2000
  • Electrically conductive composites have been prepared by treating fabrics with oxidizing agent and exposing them to aniline, which deposited a substantial amount of conductive polymer within the interstices of the material. However the conductivity of the composite fabrics was limited by the irregular deposition of the conductive polymer layer. To improve the conductivity of polyaniline/nylon 6 composite fabrics, we modified the surface characteristics of nylon 6 fabrics by various plasma treatments and increased diffusion and adsorption of aniline by ultrasonic treatments. By the oxygen plasma treatment, attachment of functional groups such as C-O and C-OH increased on the surface of nylon 6 fiber, which promoted adhesion to polyaniline resulting in the higher add-on and electrical conductivity. Electrical conductivities of polyaniline/nylon 6 composite fabrics were highly increased by ultrasonic treatment, which assisted the diffusion of aniline into the inside of nylon fabrics by cavitation and vibration. Also, the effects of monomer concentration and the number of deposition cycles on the nylon 6 fabric conductivity Were investigated. As a result, the fabric conductivity increased with the monomer concentration and the number of polymerization deposition cycles.

  • PDF

An experimental study of particle deposition from high temperature gas-particle flows (고온의 기체 입자 유동으로부터 입자부착 현상에 관한 실험적 연구)

  • 김상수;김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.501-508
    • /
    • 1987
  • Experimental studies of particle (TiO$\_$2/) deposition from the laminar hot gas particle flow (about 1565K) onto the cold wall surface (about 1215K-1530K) were carried out by the 'real time' laser light reflectivity method (LLRM) and the photographs of scanning electron microscope(SEM). The LLRM was used for the measurement of thermophoretic deposition rates of small particles (d$\_$p/<3.mu.m), and the photographs of SEM were used for determining what factors control the collection of particles having diameters ranging from 0.2 to 30 microns. Two phenomena are primarily responsible for transport of the particles across the laminar boundary layers and deposition: (1) particle thermophoresis (i.e. particles migration down a temperature gradient), and (2) particle inertial impaction, the former effect being especially larger factor of the particle deposition in its size over the range of 0.2 to 1 microns. And also, this study indicates that thermophoresis can be important for particles as large as 15 microns. Beyond d$\_$p/=16.mu.m, this effect diminishes and the inertial impaction is taken into account as a dominant mechanism of particle deposition. The results of present experiments found to be in close agreement with existing theories.

Measurement of the Skin Blood Flow using Cross-Correlation (Cross-Correlation법에 의한 피부 혈류속도 측정)

  • Lee, Jeong-Taek;Im, Chun-Seong;Ryu, Jeom-Su;Lee, Jong-Su;Gong, Seong-Bae;Kim, Yeong-Gil
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.379-384
    • /
    • 1998
  • To measure precisely the blood velocity in the skin microcirculation, we have used time domain correlation (called Cross-Correlation) based on the processing of the backscattered RF signal obtained with a wideband echographic imaging transducer, although it is difficulties of adaptation of the pulsed wave system, because of the data processing in real time and the hardware problem. This dedicated technology based on a 20MHz echographic imaging system has been developed. We present how the experimental data, i.e. the backscattered RF signal, have to be analyzed. After RF lines realignment, stationary echo canceling procedure and correlation level control, a velocity profile has been obtained. In-vitro result show that velocity measurements as low as 0.1mm/sec attainable with a 80${\mu}m$ in axial resolution. We have also validated with in-vivo experimentation on the external ear of a rabbit using B-mode sector scanning image and M-mode image of a custom made 20MHz skin image system. The flow of the "auriculares caudales" vein, a microvessel of 600 m diameter, has been detected and studied. This technique will allow a more precise exploration of circulatory troubles in cutaneous pathologies.

  • PDF