• Title/Summary/Keyword: 초음파 용착

Search Result 20, Processing Time 0.028 seconds

One-wave Step Horn Design for Ultrasonic Machining for Metal Welding (금속 용착을 위한 초음파 가공용 한파장 스텝 혼의 설계)

  • Back, Si-Young;Jang, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4735-4741
    • /
    • 2010
  • The ultrasonic metal welding is highly used in extensive field due to the possibility for welding of various materials such as new materials, plated structures and etc, and its welding conditions has been diversify. In this paper, one-wavelength tool horn of step type designed for ultrasonic metal welding of dissimilar metal sheets has performed by FEM analysis. FEM analysis is applied to predict the natural frequency of ultrasonic tool horn and use of in the optimal design of ultrasonic horn shape. And the optimal design of one-wavelength step horn is confirmed experimentally using natural frequency analysis system.

Evaluation on Welding Characteristic of Ni-Cu Sheet by Ultrasonic Machining (초음파 가공에 의한 Ni-Cu 박판의 용착 특성 평가)

  • Back, Si-Young;Jang, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1070-1077
    • /
    • 2011
  • This paper is studied on the influence of machining conditions on weldability obtained by ultrasonic machining. The weldability estimation of dissimilar Ni-Cu sheets with the optimization of one-wavelength horn is confirmed by the use of ultrasonic machining. The optimal welding condition with tensile test by setting the ultrasonic machining parameters is suggested and the weldability is estimated by SEM observation and EDX-ray analysis. Experimental studies are worked with the measure of tensile strength and the analysis of SEM photograph after the ultrasonic machining of workpiece. Machining parameters of machining time, pressure, and amplitude are also applied to this paper.

The Establishment of Bonding Conditions of Cu Using an Ultrasonic Metal Welder (초음파 금속 용착기를 이용한 Cu 박판의 용착성 실험)

  • Jang, Ho-Su;Park, Woo-Yeol;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.570-575
    • /
    • 2011
  • Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each parts' shape, length and mass can affect driving frequency and vibration mode. This paper analyzed Cu sheet deposition characteristics using ultrasonic metal welder and tension tester. A horn suitable for 40,000Hz was attached to the ultrasonic metal welder in order to weld Cu plates. The Cu sheet welding was done with different amplitude, pressure, and welding time, and its maximum tension was measured with tension tester. Maximum tension of 153.87N was obtained when the pressure was 2.0bar, amplitude was 80%, and welding time was 0.30s. Therefore, excessive welding condition negatively influences maximum tension measurement result.

Establishment of Conditions for Ultrasonic Welding of Cu sheet (Cu 박판에 대한 초음파 용착 조건 확립)

  • Seo, Jeong-Seok;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.282-287
    • /
    • 2010
  • This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Cu sheet and Cu sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 30% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.

A Horn of Half-wave Design and Manufacture for Ultrasonic Metal Welding (초음파 금속 용착을 위한 반파장 혼의 설계 및 제작)

  • Kim, Eun-Mi;Jang, Ho-Su;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.790-796
    • /
    • 2010
  • This paper designed the horn of half-wave needed for Ultrasonic meta) welding. The horn has to be designed and manufactured accurately, because measurements such as the shape, length, mass and etc. have effects on the resonant frequency and the vibration mode. Designed horn of half-wave has the feature of 40,000Hz of nature frequency, and maximizes vibration range in the Tip by resonance in the frequency of ultrasonic wave machine. In this study, we calculated and analyzed the natural frequency to find the optimal design of the horn that amplified the amplitude about double by the modal analysis and harmonic analysis using ANSYS. And we did FFT analysis of the manufactured horn.

The Establishment of Bonding Conditions of Cu Sheet using an Ultrasonic Metal Welder (초음파 금속 용착기를 이용한 Cu 박판의 접합성 평가)

  • Park, Woo-Yeol;Jang, Ho-Su;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each part's shape, length and mass can affect driving frequency and vibration mode. This paper gives a description of an experimental study of the ultrasonic welding of metals. A horn suitable for 40,000Hz was attached to the ultrasonic metal welder in order to weld Cu sheet. The Cu sheet welding was done with different amplitude, pressure and welding time, and its maximum tension was measured. Maximum tension of 177.99N was obtained when the pressure was 2.5bar, amplitude was 80%, and welding time was 0.34sec. Therefore, excessive welding condition negatively influences maximum tension measurement result.

Optimal Design of Tool Horn for Ultrasonic Metal Welding (초음파 금속 용착을 위한 공구혼의 최적설계)

  • Jang, Ho-Su;Park, Woo-Yeol;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.263-267
    • /
    • 2011
  • Ultrasonic metal welding can be used to weld different metals together safely and precisely, without solder, flux and special preparation. Ultrasonic metal welding machine consists of a power supply, a transducer, a booster and a horn. This paper designed the horn needed for Ultrasonic metal welding. The horn has to be designed and manufactured accurately, because measurements such as the shape, length, mass and etc. have effects on the resonant frequency and the vibration mode. The designed horn has the feature of 40,000Hz of nature frequency, and maximizes vibration range in the Tip by resonance in the frequency of ultrasonic wave machine. In this paper, we calculated and analyzed the natural frequency to find the optimal design of the horn that had the amplitude about $12{\mu}m$ by the modal analysis and harmonic analysis using ANSYS. And we analyzed FFT analysis of the manufactured horn.

Welding Strength in the Ultrasonic Welding of Multi-layer Metal Sheets for Lithium-Ion Batteries (리튬이온 배터리용 다층박판 금속의 초음파 용착시 용착강도)

  • Kim, Jin-Bom;Seo, Ji-Won;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.100-107
    • /
    • 2021
  • As a significant technology in the smartization era promoted by the Fourth Industrial Revolution, the secondary battery industry has recently attracted significant attention. The demand for lithium-ion batteries (LIBs), which exhibit excellent performance, is considerably increasing in different industrial fields. During the manufacturing process of LIBs, it is necessary to join the cathode and anode sheets with thicknesses of several tens of micrometers to lead taps of the cathode and anode with thicknesses of several hundreds of micrometers. Ultrasonic welding exhibits excellent bonding when bonded with very thin plates, such as negative and positive electrodes of LIBs, and dissimilar and highly conductive materials. In addition, ultrasonic welding has a small heat-affected zone. In LIBs, Cu is mainly used as the negative electrode sheet, whereas Cu or Ni is used as the negative electrode tab. In this study, one or two electrode sheets (t0.025 mm Cu) were welded to one lead tab (t0.1 mm Cu). The welding energy and pressure were used as welding parameters to determine the welding strength of the interface between two or three welded materials. Finally, the effects of these welding parameters on the welding strength were investigated.

Evaluation of the Weldability of Cu Sheet through the Ultrasonic Metal Welding Experiment (Cu박판의 초음파 금속 용착 실험을 통한 용착성 평가)

  • Park, Woo-Yeol;Jang, Ho-Su;Kim, Jung-Ho;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.613-618
    • /
    • 2012
  • The Ultrasonic metal welding is used in the solid-phase welding method at room temperature or low temperature state. In welding process, the high frequency vibration energy is delivered to the welding part under the constant pressure for welding. In this study, we aimed to design and manufacture a 40,000 Hz band horn through finite element analysis. By performing modal analysis and harmonic response analysis, the modal analysis result is that the horn frequency was 39,599Hz and the harmonic response result that the horn frequency was 39,533Hz. These results were similar. In order to observe the designed horn's performance, about 4,000 voltage data was obtained from a light sensor and was analyzed by FFT analysis using Origin Tool. The result RMS amplitude was approximately $8.5{\mu}m$ at 40,000Hz, and maximum amplitude was $12.3{\mu}m$. Using this manufactured horn along with an ultrasonic metal welder and tension tester, the weldability of Cu sheets was evaluated. The maximum tensile force was 66.53 N in the welding condition of 2.0 bar pressure, 60% amplitude, and 0.32 s welding time. In excessive welding conditions, it was revealed that weldability is influenced negatively.

Optimal Welding condition in Ultrasonic Welding of Ni steel sheet (Ni 박판의 초음파 용착시 최적용착 조건)

  • Seo, Jeong Seok;Park, Dong Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.47-52
    • /
    • 2010
  • Miniaturization and lightweight are increasingly the recent trend in the manufacture of electric appliances and machine parts. So technology of micro joining for joining materials is indispensable. This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and Horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Ni sheet and Ni sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 45% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.