• Title/Summary/Keyword: 초음파 빔

Search Result 112, Processing Time 0.03 seconds

Functional beamforming for high-resolution ultrasound imaging in the air with random sparse array transducer (고해상도 공기중 초음파 영상을 위한 기능성 빔형성법 적용)

  • Choon-Su Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.361-367
    • /
    • 2024
  • Ultrasound in the air is widely used in industry as a measurement technique to prevent abnormalities in the machinery. Recently, the use of airborne ultrasound imaging techniques, which can find the location of abnormalities using an array transducers, is increasing. A beamforming method that uses the phase difference for each sensor is used to visualize the location of the ultrasonic sound source. We exploit a random sparse ultrasonic array and obtain beamforming power distribution on the source in a certain distance away from the array. Conventional beamforming methods inevitably have limited spatial resolution depending on the number of sensors used and the aperture size. A high-resolution ultrasound imaging technique was implemented by applying functional beamforming as a method to overcome the geometric constraints of the array. The functional beamforming method can be expressed as a generalized beam forming method mathematically, and has the advantage of being able to obtain high-resolution imaging by reducing main-lobe width and side lobes. As a result of observation through computer simulation, it was verified that the resolution of the ultrasonic source in the air was successfully increased by functional beamforming using the ultrasonic sparse array.

Beamforming Technology in Medical Ultrasound System (초음파진단기의 빔포밍 기술)

  • Bae, Moo-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.551-563
    • /
    • 2012
  • Medical ultrasound systems have been used since 1950s, and are now widely used in most hospitals as indispensable diagnostic imaging systems. Since array probe was introduced in 1970s, beamforming technology using electronic signal processing has been adopted to the medical ultrasound system, and has been improved. Beamforming is a important technology which defines the resolution of the ultrasound system. In this paper, the technologies are introduced from basic beamforming principles to current trend. They include principles of beamforming using array probe, basic theory, and practical implementation, and recent topics of synthetic aperture imaging, adaptive beamforming, 2-dimensional beamforming using 2-dimensional array are also introduced. These various technologies will improve system performances continuously by merging innovatively with various technologies in other fields.

Optimal Design of Overlapped Ultrasonic Sensor Ring for High Performance Obstacle Detection Using Effective Beam Overlap (효과적인 빔 폭 중첩을 이용한 고성능 장애물 탐지용 중첩 초음파 센서 링의 최적 설계)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • This paper presents the systematic optimal design of an overlapped ultrasonic sensor ring for high performance obstacle detection using effective beam overlap. Basically, a set of low directivity ultrasonic sensors of the same type are arranged in a circle at regular intervals with their beams overlapped. First, both real and simplified beam patterns of an ultrasonic sensor and several sensor models for obstacle position estimation within its beam pattern are introduced. Second, the obstacle detection range of an overlapped ultrasonic sensor ring and its simple sensor model for obstacle position estimation are described. Third, for both conic and non-conic shaped beam pattern, the design indices of an overlapped ultrasonic sensor ring for minimal positional uncertainty in obstacle detection are defined. Fourth, the constraints imposed on the structural parameters of an overlapped ultrasonic sensor ring to guarantee non empty beam overlap and to avoid excessive beam overlap are derived. Fifth, the optimal number of ultrasonic sensors for a given radius of an overlapped ultrasonic sensor ring and the optimal radius of an overlapped ultrasonic sensor ring are determined. Throughout this paper, the MA40B8 from Murata Inc. is taken as a representative commercial low directivity ultrasonic sensor.

A Comparison Study of Single/Multi Beam Side Scan Sonar Image at High Speed Survey (고속 운용시 단일빔/다중빔 측면주사음탐기 초음파영상 비교 연구)

  • Yoon, Ki-Han;Oh, Young-Seock;Park, Seung-Soo;Park, Dong-Jin;Lee, Byung-Yong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.241-241
    • /
    • 2011
  • 실제 해상운용시험을 통해 취득한 단일빔/다중빔 측면주사음탐기 초음파영상을 비교하여 다중빔 측면 주사음탐기의 경우 운용 시 제약조건을 얼마나 향상시켰는지 이 논문에서 소개한다.

  • PDF

초음파 물체 이송시스템의 이송 메커니즘에 대한 연구

  • 정상화;최석봉;차경래;김광호;박준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.160-160
    • /
    • 2004
  • 초음파 여기를 이용한 물체 이송 시스템은 최근 급속히 발달하고 있는 광산업이나 반도체 산업에서 기존의 이송 시스템의 단점을 보완하기 위해 개발되었다. 기존의 이송 시스템들은 이송공정이나 검사 공정 등에서 광소자의 표면손상이나 자기장에 의한 반도체 소자의 전자적 배열의 손상이 우려되었다. 하지만 PZT 액츄에이터로 구동되는 초음파 발생장치(Ultrasonic wave generator)에서 발생한 초음파 여기를 이용하여 물체를 이송시킬 경우 이러한 단점은 보완된다.(중략)

  • PDF

Design of Overlapped Ultrasonic Sensor Ring and Its Application to Obstacle Detection (중첩 초음파 센서 링의 설계 및 장애물 탐지에의 응용)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 2010
  • This paper presents the optimal design method of an overlapped ultrasonic sensor ring for reduced positional uncertainty, and its application to the obstacle detection with improved resolution. Basically, it is assumed that a set of ultrasonic sensors are installed to form a circle at regular intervals with their beams overlapped. First, exploiting the overlapped beam pattern, the positional uncertainty inherent to an ultrasonic sensor is shown to be significantly reduced. Second, for an ideal ultrasonic sensor ring of zero radius, the effective beam width is defined to represent the positional uncertainty, and the optimal number of ultrasonic sensors required for minimal effective beam width is obtained. Third, for an actual ultrasonic sensor ring of nonzero radius, the design index is defined to represent the degree of positional uncertainty, and an optimal design of an overlapped ultrasonic sensor ring consisting of commercial ultrasonic sensors with low directivity is given. Fourth, given measured distances from ultrasonic sensors, the geometric method is described to compute the obstacle position with reference to the center of a mobile robot. Finally, through experiments using our overlapped ultrasonic sensor ring prototype, the validity and performance of the proposed method is demonstrated.

High-intensity focused ultrasound beam path visualization using ultrasound imaging (초음파 영상을 이용한 고강도 집중 초음파 빔 시각화)

  • Song, Jae Hee;Chang, Jin Ho;Yoo, Yang Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • In High-Intensity Focused Ultrasound (HIFU) treatment, effective localization of HIFU focus is important for developing a safe treatment plan. While Magnetic Resonance Imaging guided HIFU (MRIgHIFU) can visualize the ultrasound path during the treatment for localizing HIFU focus, it is challenging in ultrasound imaging guided HIFU (USIgHIFU). In the present study, a real-time ultrasound beam visualization technique capable of localizing HIFU focus is presented for USIgHIFU. In the proposed method, a short pulse, with the same center frequency of an imaging ultrasound transducer below the regulated acoustic intensity (i.e., Ispta < 720 mW/㎠), was transmitted through a HIFU transducer whereupon backscattered signals were received by the imaging transducer. To visualize the HIFU beam path, the backscattered signals underwent dynamic receive focusing and subsequent echo processing. From in vitro experiments with bovine serum albumin gel phantoms, the HIFU beam path was clearly depicted with low acoustic intensity (i.e., Ispta of 94.8 mW/㎠) and the HIFU focus was successfully localized before any damages were produced. This result indicates that the proposed ultrasound beam path visualization method can be used for localizing the HIFU focus in real time while minimizing unwanted tissue damage in USIgHIFU treatment.

Effect of Initial Value Setting on Convergence Characteristics and Margin of Step Parameters in an Adaptive Ultrasonic Beamforming System using LMS Algorithm (LMS 알고리즘을 이용하는 적응형 초음파 빔포밍 시스템에서 초기치 설정이 수렴 특성과 스텝 파라미터의 여유도에 미치는 영향)

  • Kwang-Chol Chae;Ki-Ryang Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.241-250
    • /
    • 2023
  • In this paper, when using the LMS algorithm for adaptive ultrasonic beamforming system, the effect of initial value setting on the margin of step parameters was studied. To this end, quasi-ideal beams, rotational beams with arbitrarily set beam widths were used as examples. In the numerical simulations, an arbitrary initial value(the number of sound sources fixed to any number) was set in the ultrasonic beamforming system, and the margin of the step parameter and convergence characteristics thereof were compared.

Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer (Phased Array트랜스듀서에 있어서 구성 압전소자수의 변화에 따른 초음파 빔 전파 특성의 수치 해석)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.207-216
    • /
    • 1999
  • A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased.

  • PDF

Nonlinear phenomena in the focused fields diffracted by a straight edge (직선 edge 에 의해 회절된 집속음장내에서의 비선형 현상)

  • 김정순
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06d
    • /
    • pp.13-17
    • /
    • 1998
  • 집속음장이 고조파성분을 이용한 초음파영상의 특성을 해석하는 초기단계로서 음축에 수직하게 놓인 강체판의 직선 edge가 집속 가우스빔을 회절시킨다고 가정하고, edge의 전후에서 발생하는 제 2고조파를 고려해서 회절음장을 해석하였다. 계산에서는 그린함수의 간단화를 위해 , Fresnel 근사를 이용하였고 실험에서는 성형전극을 형성시킨 요면 압전진동자에 의한 1.9MHz 집속가우스음원에 의해 만들어지는 초음파 빔에 수직하게 edge을 삽입시켰다. 회절 edge 후방에서 음장을 관측한 결과, 제 2고조파의 빔형상을 제외하고는 계산치와 실험치가 잘 일치하고 있다.

  • PDF