• Title/Summary/Keyword: 초소형 터보제트엔진

Search Result 13, Processing Time 0.033 seconds

Development of High Performance Micro Turbojet Engine (고성능 초소형 터보제트엔진 개발)

  • Paeng, Ki-Seok;Ahn, Chul-Ju;Min, Seong-Ki;Kim, Yu-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.548-551
    • /
    • 2010
  • A 150 lbf-thrust class micro turbojet engine has been developed. The engine could be applied to power plant for small aviation vehicle such as UAV, decoy and anti-radar missile and was designed with concepts that has small size, low-cost and high performance. A prototype was manufactured and performed the ground static test and high altitude test. This paper outlines the features and layout of 150 lbf turbojet engine and also describes the design characteristics and test results of the engine and components.

  • PDF

Development of Thrust Measurement System for Small Turbojet Engine Altitude Test (초소형 터보제트엔진의 고공환경시험용 추력측정시스템 개발)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Bo-Hwa;Song, Jae-Kang;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.379-380
    • /
    • 2009
  • 한국항공우주연구원 추진기관팀은 1999년 10월에 3,000 lbf 급 고공환경 엔진시험 설비를 갖추고 소형 가스터빈 엔진의 고공환경 성능시험에 이를 활용하고 있다. 하지만 새롭게 2008년부터 고공환경 성능시험을 진행하고 있는 엔진은 1,000 lbf 미만의 초소형 엔진으로써 기존 추력측정 시스템을 이용하여서는 정확한 추력의 측정을 보장할 수 없다. 본 논문에서는 초소형 엔진의 고공환경 성능시험 수행을 위한 추력대의 구축 과정을 다루고 있다.

  • PDF

Development of a 65hp, Twin-Spool, Mini-Turboshaft Engine Core for UAV (UAV용 65마력급 초소형 분리축 터보샤프트 엔진 코어 개발)

  • 이시우;김경수;이기호;김승우
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.253-256
    • /
    • 2003
  • The engine core of a 65hp-turboshaft engine for UAV is developed and modified into a 55lbf-turbojet engine. Since the core engine is installed with a propelling nozzle, which has the same mass flow characteristics as the power generator of the turboshaft engine its mechanical and aerodynamic characteristics are basically the same as those of the complete engine. Engine output is not shaft power but thrust force that is easier to measure. The core engine is very useful for core test purpose. Besides, the core engine itself can be directly used for propulsion of small air vehicles.

  • PDF

Full Rig Test and High Altitude Ignition Test of Micro Turbojet Engine Combustor (초소형 터보제트엔진 연소기의 리그시험 및 고고도 점화시험)

  • Lee, Dong-Hun;Kim, Hyung-Mo;Park, Poo-Min;You, Gyung-Won;Paeng, Ki-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.373-376
    • /
    • 2009
  • A full rig combustor test and altitude ignition test were carried out for radial-annular combustor of micro turbojet engine. 11.2% total pressure loss and 99.85% of combustion efficiency were measured at design point of engine under sea level standard condition and $2{\sim}6$ of air excess ratio for ignition envelope was achieved on engine starting regime. Finally, A 30,000 ft high altitude ignition test was also performed and finally we found out that the developed radial-annular combustor is appropriate to micro turbojet engine.

  • PDF

A Study of Spray Characteristics for the Slinger Injector System of Micro Turbo Jet Engine (초소형 터보제트엔진 슬링거 인젝터의 분무특성)

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-358
    • /
    • 2007
  • An experimental study was performed to understand spray characteristics of the slinger injector. system for the micro turbojet engine. In this fuel injection system, fuel is sprayed and atomized in the combustor by centrifugal forces of engine shaft. This experimental apparatus consist of a high speed rotating Spindle, slinger injector, pressure tank and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the droplet size(SMD) is largely affected to rotational speed, mass flow rate and the number of injection orifice. From the this experimental study, we could understand the spray characteristics of the slinger injection system and obtain the optimum shape of the slinger injector nozzle which is suitable for the micro turbojet engine.

  • PDF

Development and Test of Slinger Combustor for Micro Turbojet Engine (초소형 터보제트엔진 슬링거 연소기의 개발과 시험)

  • Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man;Kim, Hyung-Mo;Park, Poo-Min;Choi, Young-Ho;Jeon, Byung-Ho;Park, Soo-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.149-152
    • /
    • 2008
  • A slinger combustor which can be applied to micro turbojet engine has been developed with the combustor rig test. A rotating fuel injector with high speed rpm was designed, manufactured and tested to apply into slinger combustor through spray test and adequate droplet size and spray distribution were achieved. The CFD was used to analyze internal flow of the combustor. We found out that the combustor shows 11.2% of pressure loss and 99.8% of combustion efficiency at full combustor rig test.

  • PDF

A study on Windmilling Start Performance of Micro Turbo-jet Engine (초소형 엔진의 윈드밀링 시동 성능 해석)

  • Kim, Wan-Jo;Park, Hwi-Seob;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.319-322
    • /
    • 2007
  • A numerical method for prediction of the Windmilling start performance of micro-turbojet engine has been developed. The method incorporates the available loss correlations and analyses for the estimation of the performance of the major engine components. It has been applied to the micro turbojet engine with the mixed type compressor. The starting performance characteristics on the on/off-design regions have been analysed. Additionally, the sensitivity of each design parameter which has an effect on Windmilling start performance has been analysed.

  • PDF

The introduction of Engine Performance Test for Miniature Turbojet Engine considering humidity effects (습도 영향을 고려한 초소형 터보제트 엔진 성능시험 소개)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok;Kim, Yu-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.335-338
    • /
    • 2010
  • The moisture in the atmosphere exerts a lot of influence upon Gas turbine engine performances. There is a noticeable influence of wet air at the summer sea level, high flight mach number and low engine rpm increasingly. An altitude Engine Test Facility is used to accomplish the engine performance tests at dry air condition and wet air condition, through which engine performance results is revealed. In the result, net thrust and specific fuel consumption measured -2.826% and 1.325%, respectively at wet air condition compared to dry air condition.

  • PDF

Development of the Condition Monitoring Test Cell Using the Micro Gas Turbine Engine (초소형 가스터빈을 이용한 상태감시 시험장치 개발)

  • Kho, Seong-Hee;Ki, Ja-Young;Koo, Young-Ju;Kong, Chang-Duk;Lee, Eun-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.345-349
    • /
    • 2009
  • This test cell is developed to the institutes or laboratories research and study gas turbine engine for academic purpose with this test data to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation The test cell is installed to monitor and compare real-time data with reference engine model performance simulation data. using by NI DAQ(Data acquisition)device and LabVIEW program based on 30lbf-micro turbojet engine.

  • PDF

A Study on Windmilling Start Performance of Micro Turbo-jet Engine (초소형 엔진의 윈드밀링 시동 성능 해석)

  • Kim, Wan-Jo;Park, Hwi-Seob;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.15-23
    • /
    • 2008
  • A numerical method based on the prediction of total pressure loss of major components of the engine has been developed for prediction of the windmilling start performance of micro-turbojet engine. The start performance in on/off design region has been analysed by applying this method to predict windmilling start-able regions of the centrifugal-type engine. The results of this analysis have been validated by comparing with the test data. The effect of each design parameters on windmilling start performance has been analysed for the enlargement of start-able regions.