• Title/Summary/Keyword: 초상자성 산화철 나노입자

Search Result 9, Processing Time 0.026 seconds

The Development of Theoretical Model for Relaxation Mechanism of Sup erparamagnetic Nano Particles (초상자성 나노 입자의 자기이완 특성에 관한 이론적 연구)

  • 장용민;황문정
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Purpose : To develop a theoretical model for magnetic relaxation behavior of the superparamagnetic nano-particle agent, which demonstrates multi-functionality such as liver- and lymp node-specificity. Based on the developed model, the computer simulation was performed to clarify the relationship between relaxation time and the applied magnetic field strength. Materials and Methods : The ultrasmall superparamagnetic iron oxide (USPIO) was encapsulated with biocompatiable polymer, to develop a relaxation model based on outsphere mechanism, which was resulting from diffusion and/or electron spin fluctuation. In addition, Brillouin function was introduced to describe the full magnetization by considering the fact that the low-field approximation, which was adapted in paramagnetic case, is no longer valid. The developed model describes therefore the T1 and T2 relaxation behavior of superparamagnetic iron oxide both in low-field and in high-field. Based on our model, the computer simulation was performed to test the relaxation behavior of superparamagnetic contrast agent over various magnetic fields using MathCad (MathCad, U.S.A.), a symbolic computation software. Results : For T1 and T2 magnetic relaxation characteristics of ultrasmall superparamagnetic iron oxide, the theoretical model showed that at low field (<1.0 Mhz), $\tau_{S1}(\tau_{S2}$, in case of T2), which is a correlation time in spectral density function, plays a major role. This suggests that realignment of nano-magnetic particles is most important at low magnetic field. On the other hand, at high field, $\tau$, which is another correlation time in spectral density function, plays a major role. Since $\tau$ is closely related to particle size, this suggests that the difference in R1 and R2 over particle sizes, at high field, is resulting not from the realignment of particles but from the particle size itself. Within normal body temperature region, the temperature dependence of T1 and T2 relaxation time showed that there is no change in T1 and T2 relaxation times at high field. Especially, T1 showed less temperature dependence compared to T2. Conclusion : We developed a theoretical model of r magnetic relaxation behavior of ultrasmall superparamagnetic iron oxide (USPIO), which was reported to show clinical multi-functionality by utilizing physical properties of nano-magnetic particle. In addition, based on the developed model, the computer simulation was performed to investigate the relationship between relaxation time of USPIO and the applied magnetic field strength.

  • PDF

Synthesis of Monodispersed Magnetic Polymer Particle (균일한 자성 고분자 입자의 합성)

  • Ahn, Byung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.316-321
    • /
    • 2008
  • Monodispersed particles of poly(styrene-co-4-vinylpyridine), poly(st-co-4vp) were prepared by soapless emulsion polymerization. Iron oxide was formed on the surface and inside of the poly(st-co-4vp) particles by thermal decompostion of iron pentacarbonyl. The obtained magnetic poly(st-co-4vp) particles was mondispersed and the average size was 250 nm. The magnetic poly(st-co-4vp) particles had 14% of iron oxide, which was identified as $Fe_3O_4$ by XRD. The magnetic poly(st-co-4vp) particles had superparamagnetism according to superconducting susceptometer (SQUID).

Size Dependence of FMR Linewidth in Iron Oxide Nanoparticles (산화철 나노입자의 크기에 따른 강자성 공명 신호의 선폭 특성)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • We measured the ferromagnetic resonance (FMR) signal using the monodisperse iron oxide nanoparticles with size D=4.67 nm, 5.64 nm and 6.34 nm synthesized by using the thermal decomposition method, respectively. The measured ferromagnetic resonance signals were compared with the calculated ones for superparamagnetic nanoparticles with lognormal volume distribution. The FMR linewidth broadening was propositional to tanh($V^2$), where V was volume of nanoparticles. The narrow linewidth of small size nanoparticles was due to the surface spins, while the broad linewidth of large size nanoparticles was due to the bulk spins affected by the crystalline structure of iron oxide nanoparticles. The superposition of surface and bulk effect was confirmed at D=5.64 nm nanoparticles, which was near the critical size for linewidth transition from surface effect to bulk effect.

Study of Superparamagnetic Microneedles containing Iron Oxide Nanoparticles (산화철 나노입자를 함유한 초상자성 마이크로니들에 관한 연구)

  • Lee, Seung-Jun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.556-561
    • /
    • 2021
  • Recently, iron oxide nanoparticles have been used as the subject of many studies on drug delivery system (DDS) due to their excellent magnetic properties and biocompatibility in response to external magnetic fields. In this study, hyaluronic acid-superparamagnetic microneedles (HA-SMNs) and carboxy methyl cellulose-superparamagnetic microneedles (CMC-SMNs) containing superparamagnetic iron oxide nanoparticles (SIONs) were prepared with HA and CMC as a matrix materials of MNs (microneedles). Various properties of SMNs were then investigated with scanning electron microscopy (SEM), superconducting quantum interference device-vibrating sample magnetometer (SQUD-VSM), frequency mixing magnetic detection (FMMD), and polymer/bio membrane. The SQUID-VSM measurements showed superparamagnetism of HA-SMNs and CMC-SMNs containing SIONs. The FMMD results demonstrated that the signal intensity changed significantly as the concentration of SIONs increased. In addition, SMNs exhibited the average skin permeability intensities on the bio membrane for HA-SMNs and CMC-SMNs were 92.5 and 98.5%, respectively. These results suggested that SMNs could be utilized as deliver materials for a TDDS and MR molecular imaging.

Study on Formation Mechanism of Iron Oxide Nanoparticles (산화철 나노입자의 형성 메커니즘에 대한 연구)

  • Kim, Dong-Young;Yoon, Seok-Soo;Takahashi, Migaku
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.167-172
    • /
    • 2012
  • In order to analyze the formation mechanism of iron oxide nanoparticles, we measured the heat flow of $Fe(OL)_3$ precursor with temperature, and TEM images and AC susceptibility of aliquots samples sequentially taken from the reaction solution, respectively. The thermal decomposition of two OL-chain from $Fe(OL)_3$ produced the Fe-OL monomer, which were contributed to the formation of iron oxide nanoparticles. In the initial stage of nanoparticles formation, the small iron oxide nanoparticles had ${\gamma}-Fe_2O_3$ structure. However, as the iron oxide nanoparticles were rapidly growth, the iron oxide nanoparticles showed ${\gamma}-Fe_2O_3$-FeO core-shell structure which the FeO layer was formed on the surface of ${\gamma}-Fe_2O_3$ nanoparticles by insufficient oxygen supply from the reaction solution. These nanoparticles were transformed to $Fe_3O_4$ structure by oxidation during long aging time at high temperature. Finally, the $Fe_3O_4$ nanoparticles with high saturation magnetization and stable in the air could be easily synthesized by the thermal decomposition method.

A Research on Superparamagnetic Iron Oxide Nanoparticles' Toxicity to U373MG Cell and its Effect on the Radiation Survival Curve (산화철 나노입자의 U373MG 세포 독성평가 및 방사선 세포생존 곡선에 미치는 영향에 대한 연구)

  • Kang, Seonghee;Kim, Jeonghwan;Kim, Dokyung;Kang, Bosun
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.507-513
    • /
    • 2012
  • This research was performed to evaluate the superparamagnetic iron oxide nanoparticles'(SPIONs) cell toxicity and to measure the radiation cell survival curve changes of SPIONs-uptake glioblastoma multiforme cells. The results could be practically used as the fundamental data to ameliorate proton beam cancer therapy, for example, providing necessary GBM treatment dose in the proton beam therapy when the therapy takes advantage of SPIONs. The assessment of the toxicological evaluation of synthesized SPIONs was accomplished by MTT assay as an in vitro experiment. The results showed no meaningful differences in the cell survival rate at the $1-100{\mu}g/ml$ SPIONs concentrations, but the cell toxicity was shown as the cell survival rate decreased up to 74.2% at the $200{\mu}g/ml$ SPIONs concentration. Then, we measured each radiation cell survival curve for U373MG cells and SPIONs-uptake U373MG cells with 0~5 Gy of proton beam irradiations. It is learned from the analysis of the experimental results that the SPION-uptake cells' radiation survival rate was more rapidly decreased as the irradiation dose increased. In conclusion we confirmed that SPIONs-uptake in U373MG cells induces cell death at the much less dose than the lethal dose of SPION-non-uptake cell. This research shows that the therapeutic efficacy of glioblastoma multiforme treatment in proton beam therapy can be improved by SPIONs targeting to the GBM cells.

Research on Mobile Wheelchair Lift Design (이동식 휠체어 리프트 디자인 연구)

  • 이명기
    • Archives of design research
    • /
    • v.15 no.4
    • /
    • pp.275-284
    • /
    • 2002
  • To improve the social and economic position of the disabled people and secure their human rights, an integrated society should be buill. To build such a society, an adequate access should be provided to the movement or in using buildings or facilities. The inconveniences from social life on the part of the disabled people might not result from their impairment or disability, but from physical and social barriers in the environment surrounding them. Therefore, it is necessary to reconstruct entire systems of the society as a disabled people-friendly structure in order to remove those barriers, make them stand their own feet in our communities and freely participate in the social activities. This will eventually lead to build a society in which all people including the disabled people can use those facilities in a more convenient way. It is almost impossible for the disabled people to safely and conveniently access to and use facilities and equipments and freely move to their desired places, without any help from others in Korea. Even though, there are currently many disabled people-related convenience facilities, they have been independently built without a connection with other facilities and buildings, thus not greatly useful. Even when convenience facilities have been built, mostly they are superficially set up; therefore, in many cases, the disabled peOple cannot use those facilities. In this. research, I tried a new concept of mobile wheelchair lift design, which the disabled people can operate without restrictions, when using the public facilities. The key to this research was to develop the existing import-oriented simple functional products to a new system with functional safety and high quality orientation. Also, this research aimed at bringing an. import substitution effect, as well as preempting the mobile wheelchair lift market by advancing into overseas markets through application of new image designs in the field of disabled people aid equipments.

  • PDF

Utility-Based Video Adaptation in MPEG-21 for Universal Multimedia Access (UMA를 위한 유틸리티 기반 MPEG-21 비디오 적응)

  • 김재곤;김형명;강경옥;김진웅
    • Journal of Broadcast Engineering
    • /
    • v.8 no.4
    • /
    • pp.325-338
    • /
    • 2003
  • Video adaptation in response to dynamic resource conditions and user preferences is required as a key technology to enable universal multimedia access (UMA) through heterogeneous networks by a multitude of devices In a seamless way. Although many adaptation techniques exist, selections of appropriate adaptations among multiple choices that would satisfy given constraints are often ad hoc. To provide a systematic solution, we present a general conceptual framework to model video entity, adaptation, resource, utility, and relations among them. It allows for formulation of various adaptation problems as resource-constrained utility maximization. We apply the framework to a practical case of dynamic bit rate adaptation of MPEG-4 video streams by employing combination of frame dropping and DCT coefficient dropping. Furthermore, we present a descriptor, which has been accepted as a part of MPEG-21 Digital Item Adaptation (DIA), for supporting terminal and network quality of service (QoS) in an interoperable manner. Experiments are presented to demonstrate the feasibility of the presented framework using the descriptor.

Preparation and characterization of Poly(2-methacryloyloxyethyl phosphorylcholine/fluorescein O-methacrylate)-coated iron oxide nanoparticles (Poly(2-methacryloyloxyethyl phosphorylcholine/fluorescein O-methacrylate)가 도입된 산화철 나노 입자의 제조 및 발열 특성 연구)

  • Ryu, Sunggon;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.106-112
    • /
    • 2018
  • Recently, the hyperthermia treatment of malignant tissues has gained great attention as a biocompatible and benign method that facilitates successful cancer therapy compared to radiation and chemotherapy. In this study, superparamagnetic ($Fe_3O_4$) iron oxide nanoparticles (IONP) coated with biocompatible polymer (IONP@P(MPC/FOM)) for the purpose of hyperthermia treatment were prepared and related characterization were performed. IONPs with having 15 nm diameter were first prepared by coprecipitation and followed by surface modification with 4-cyanopentanoic acid dithiobenzoate (CTP) for reversible addition-fragmentation chain transfer (RAFT) copolymerization by using 2-methacryloyloxyethyl phosphorylcholine (MPC) and fluorescein O-methacrylate (FOM) to form corona layer of P(MPC/FOM) on the surface of the IONP. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the morphology and hydrodynamic size of the IONP@P(MPC/FOM) and thermogravimetric analysis (TGA) confirmed the formation of P(MPC/FOM) corona layer, respectively. Exposing IONP dispersion to alternating magnetic field suggests that the IONP@P(MPC/FOM) aqueous dispersion with 0.2 wt.% can be used for hyperthermia treatment.