DOI QR코드

DOI QR Code

Preparation and characterization of Poly(2-methacryloyloxyethyl phosphorylcholine/fluorescein O-methacrylate)-coated iron oxide nanoparticles

Poly(2-methacryloyloxyethyl phosphorylcholine/fluorescein O-methacrylate)가 도입된 산화철 나노 입자의 제조 및 발열 특성 연구

  • Ryu, Sunggon (Department of Applied Chemistry, School of Engineering, Kyungpook National University) ;
  • Cheong, In Woo (Department of Applied Chemistry, School of Engineering, Kyungpook National University)
  • 류성곤 (경북대학교 공과대학 응용화학과) ;
  • 정인우 (경북대학교 공과대학 응용화학과)
  • Received : 2018.07.31
  • Accepted : 2018.09.01
  • Published : 2018.09.30

Abstract

Recently, the hyperthermia treatment of malignant tissues has gained great attention as a biocompatible and benign method that facilitates successful cancer therapy compared to radiation and chemotherapy. In this study, superparamagnetic ($Fe_3O_4$) iron oxide nanoparticles (IONP) coated with biocompatible polymer (IONP@P(MPC/FOM)) for the purpose of hyperthermia treatment were prepared and related characterization were performed. IONPs with having 15 nm diameter were first prepared by coprecipitation and followed by surface modification with 4-cyanopentanoic acid dithiobenzoate (CTP) for reversible addition-fragmentation chain transfer (RAFT) copolymerization by using 2-methacryloyloxyethyl phosphorylcholine (MPC) and fluorescein O-methacrylate (FOM) to form corona layer of P(MPC/FOM) on the surface of the IONP. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the morphology and hydrodynamic size of the IONP@P(MPC/FOM) and thermogravimetric analysis (TGA) confirmed the formation of P(MPC/FOM) corona layer, respectively. Exposing IONP dispersion to alternating magnetic field suggests that the IONP@P(MPC/FOM) aqueous dispersion with 0.2 wt.% can be used for hyperthermia treatment.

악성 조직의 온열 치료는 성공적인 암 치료 방법의 하나로서 방사선 치료 및 화학 요법에 비해 생체 적합성이 우수하고 비교적 온화한 조건에서 사용할 수 있어 최근 큰 주목을 받고 있다. 본 연구에서는 온열 치료를 목적으로 생체 적합성 고분자인 poly(2-methacryloyloxyethyl phosphorylcholine/fluorescein O-methacrylate) (P(MPC/FOM))를 코팅한 초상자성 산화철 나노 입자 (IONP)를 제조하고 관련 특성을 분석하였다. 15 nm 직경을 갖는 IONP는 먼저 공침법에 의해 제조된 후, 4-cyanopentanoic acid dithiobenzoate (CTP) 을 사용하여 IONP의 표면을 개질하였으며, 이 후 MPC 및 FOM 단량체의 reversible addition-fragmentation chain transfer (RAFT) 공중합을 통해 P(MPC/FOM)의 코로나 층을 형성시켰다. 투과 전자 현미경 (TEM)과 동적 광 산란 (DLS) 분석을 통해 IONP@P(MPC/FOM)의 형태 및 수력학적 크기를 확인할 수 있었으며, 열 중량 분석 (TGA)을 통해 P(MPC/FOM) 코로나 층의 형성을 확인하였다. 또한 교류 자기장을 이용해 IONP 분산액을 노출시킨 결과, 0.2 중량 %의 IONP @ P(MPC / FOM) 수분산액이 온열 치료에 사용될 수 있음을 확인하였다.

Keywords

References

  1. M. Malekigorji, A. D. M. Curtis, C. Hoskins, G. Varbiro, J. Nanomed. Res., 1(2), 0004 (2014).
  2. R.I. Haddad, D. M. Shin, N. Engl. J. Med., 359, 1143 (2008). https://doi.org/10.1056/NEJMra0707975
  3. D. M. Shin, F. R. Khuri, Head Neck, 35, 443 (2013). https://doi.org/10.1002/hed.21910
  4. I. Banerjee, R. C. Pangule, R. S. Kane, Adv. Mater., 23, 690 (2011). https://doi.org/10.1002/adma.201001215
  5. R. S. Ningthoujam, R. K. Vatsa, Amit Kumar, Badri N. Pandey, Barc Newslett., 323, 18 (2011).
  6. J. Cui, R. De Rose, K. Alt, S. Alcantara, B. M. Paterson, K. Liang, M. Hu, J. J. Richardson, Y. Yan, C. M. Jeffery, R. I. Price, K. Peter, C. E. Hagemeyer, P. S. Donnelly, S. J. Kent, F. Caruso, ACS Nano, 9, 1571 (2015). https://doi.org/10.1021/nn5061578
  7. J. Cui, M. Bjornmalm, K. Liang, C. Xu, J. P. Best, X. Zhang, F. Caruso, Adv. Mater., 26, 7295 (2014). https://doi.org/10.1002/adma.201402753
  8. J. Schlenoff, Langmuir, 30, 9625 (2014). https://doi.org/10.1021/la500057j
  9. K. Garcia, K. Zarschler, L. Barbaro, J. Barreto, W. O'Malley, L. Spiccia, H. Stephan, B. Graham, Small, 10, 2516 (2014). https://doi.org/10.1002/smll.201303540
  10. H. Wei, N. Insin, J. Lee, H. Han, J. Cordero, W. Liu, M. Bawendi, Nano Lett., 12, 22 (2012). https://doi.org/10.1021/nl202721q
  11. S. Mondini, M. Leonzino, C. Drago, A. Ferretti, S. Usseglio, D. Maggioni, P. Tornese, B. Chini, A. Ponti, Langmuir, 31, 7381 (2015). https://doi.org/10.1021/acs.langmuir.5b01496
  12. C. Pascal, J. L. Pascal, F. Favier, M. L. Elidrissi Moubtassim, C. Payen, Chem. Mater., 11, 141 (1998).
  13. K. V. P. M. Shafi, A. Ulman, X. Yan, N.-L. Yang, C. Estourne's, H. White, M. Rafailovich, Langmuir, 17, 5093 (2001). https://doi.org/10.1021/la010421+
  14. Y. Lu, Y. Yin, B. T. Mayers, Y. Xia, Nano Lett., 2, 183 (2002). https://doi.org/10.1021/nl015681q
  15. M. Carmen Bautista, O. Bomati-Miguel, M. del Puerto Morales, C. J. Serna, S. Veintemillas-Verdaguer, J. Magn. Magn. Mater., 293, 20 (2005). https://doi.org/10.1016/j.jmmm.2005.01.038
  16. T. K. Jain, M. K. Reddy, M. A. Morales, D. L. Leslie-Pelecky, V. Labhasetwar, Mol. Pharmaceut., 5, 316 (2008). https://doi.org/10.1021/mp7001285
  17. S. Naqvi, M. Samim, M. Abdin, F. J. Ahmed, A. Maitra, C. Prashant, A. K. Dinda, Int. J. Nanomed., 5, 983 (2010).
  18. A. Petri-Fink, B. Steitz, A. Finka, J. Salaklang, H. Hofmann, Eur. J. Pharm. Biopharm., 68, 129 (2008). https://doi.org/10.1016/j.ejpb.2007.02.024
  19. W. H. Binder, H. C. Weinstabl, Monatsh. Chem., 138, 315 (2007). https://doi.org/10.1007/s00706-007-0617-2
  20. M. Mahmoudi, A. Simchi, M. Imani, J. Iran. Chem. Soc., 7, S1 (2010). https://doi.org/10.1007/BF03246181
  21. W. Feng, X. Gao, G. McClung, S. Zhu, K. Ishihara, J. L. Brash, Acta Biomater., 7, 3692 (2011). https://doi.org/10.1016/j.actbio.2011.06.007
  22. A. Garapaty, J. A. Champion, Chem. Commun., 51, 13814 (2015). https://doi.org/10.1039/C5CC03459K
  23. R. Matsuno, K. Ishihara, Macromol. Symp., 279, 125 (2009). https://doi.org/10.1002/masy.200950519
  24. W. Feng, J. L. Brash, S. Zhu. Biomaterials, 27, 847 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.006
  25. M. Mullner, J. Cui, K. F. Noi, S. T. Gunawa, F. Caruso, Langmuir, 30, 6286 (2014). https://doi.org/10.1021/la501324r