Journal of Elementary Mathematics Education in Korea
/
v.19
no.3
/
pp.305-321
/
2015
This study started with wondering whether the nonproportional model used in unit assessment for 2nd graders is appropriate or not for them. This study aims to explore the applicability of the nonproportional model to 2nd graders when they learn about numbers. To achieve this goal, we analyzed elementary mathematics textbooks, applied two kinds of tests to 2nd graders who have learned three-digit numbers by using the proportional model, and investigated their cognitive characteristics by interview. The results show that using the nonproportional model in the initial stages of 2nd grade can cause some didactical problems. Firstly, the nonproportional models were presented only in unit assessment without any learning activity with them in the 2nd grade textbook. Secondly, the size of each nonproportional model wasn't written on itself when it was presented. Thirdly, it was the most difficult type of nonproportional models that was introduced in the initial stages related to the nonproportional models. Fourthly, 2nd graders tend to have a great difficulty understanding the relationship of nonproportional models and to recognize the nonproportional model on the basis of the concept of place value. Finally, the question about the relationship between nonproportional models sticks to the context of multiplication, without considering the context of addition which is familiar to the students.
In this study, we classified word problems related to real life presented in elementary mathematics textbooks into five types of context problems(location, story, project, scrap, theme) suggested by Freudenthal(1991), and applied context problems to mathematics class to analyze the influence on students' mathematical belief and attitude. Also, we examined the types of context problems preferred according to academic performance and the reasons of preference within a group experiencing context problems. The results of the study are as follows. First, almost lessons in the mathematics textbook presents word problems related to real life, but the presenting method is inclined to a story type. Also, the problems with a story type are presented fragmentarily. Therefore, although these word problems are familiar to the students, they don't include contextual meanings and cannot induce enough mathematical motives and interests. Second, a lesson using context problems give a positive influence on their mathematics belief and attitude. It is also expected to give a positive influence on students' mathematics learning in the long run. Third, the preferred types of context problems and the reasons of preference are different according to the level of academic performance within the experimental group.
Journal of Elementary Mathematics Education in Korea
/
v.19
no.4
/
pp.501-525
/
2015
This study analyzes arithmetic word problem of multiplication and division in the mathematics textbooks and workbooks of 3rd grade in elementary school according to 2009 revised curriculum. And we analyzes type of the problem solving ability which 4th graders prefer in the course of arithmetic word problem solving and the problem solving ability as per the type in order to seek efficient teaching methods on arithmetic word problem solving of students. First, in the mathematics textbook and workbook of 3rd grade, arithmetic word problem of multiplication and division suggested various things such as thought opening, activities, finish, and let's check. As per the semantic element, multiplication was classified into 5 types of cumulated addition of same number, rate, comparison, arrayal and combination while division was classified into 2 types of division into equal parts and division by equal part. According to result of analysis, the type of cumulated addition of same number was the most one for multiplication while 2 types of division into equal parts and division by equal part were evenly spread in division. Second, according to 1st test result of arithmetic word problem solving ability in the element of arithmetic operation meaning, 4th grade showed type of cumulated addition of same number as the highest correct answer ratio for multiplication. As for division, 4th grade showed 90% correct answer ratio in 4 questionnaires out of 5 questionnaires. And 2nd test showed arithmetic word problem solving ability in the element of arithmetic operation construction, as for multiplication and division, correct answer ratio was higher in the case that 4th grade students did not know the result than the case they did not know changed amount or initial amount. This was because the case of asking the result was suggested in the mathematics textbook and workbook and therefore, it was difficult for students to understand such questions as changed amount or initial amount which they did not see frequently. Therefore, it is required for students to experience more varied types of problems so that they can more easily recognize problems seen from a textbook and then, improve their understanding of problems and problem solving ability.
The study aims to analyze elementary school students' understanding of the concept of equality sign in contexts, to reflect the types of contexts for equality sign which mathematics textbook series for $1{\sim}4$ grades on natural numbers and its operation provide, and to invetigate the effects of teaching methods of the concept of equality sign suggested in this research. In order to achieve these purposes, the origin, concept, and contexts of equality sign were theoretically reviewed and organized. Also the error types in using equality sign were reflected. Modelling, discussing truth or falsity of equations, identifying relations between numbers and their operation, conjecturing basic properties of numbers and their operations, experiencing diverse contexts for equality sign, and creating contexts for equality sign are set up as teaching methods for better understanding the concept of equality sign. The conclusions are as follows. Firstly, elementary school students' under-standing of the concept of equality sign varied by context and was generally far from satisfactory. In particular, they had difficulties in understanding the concept of the equal sign in contexts with operations on both sides. The most frequently witnessed error was to recognize equality sign as a result of operations. Secondly, student' lack of understanding of the concept of equality sign came from the fact that elementary textbooks failed to provide diverse contexts for equality sign. According to the textbook analysis, contexts with operations on the left side of the equal sign in the form of $a{\pm}b=c$ were provided excessively, with the other contexts hardly seen. Thirdly, teaching methods provided in the study were found to be effective for enhancing understanding the concept of equality sign. In other words, these methods enabled students to focus on relational understanding of concept of equality sign rather than operational one.
Journal of Elementary Mathematics Education in Korea
/
v.15
no.2
/
pp.247-282
/
2011
In the elementary school mathematics textbooks of the 7th national curriculum, just simple construction education is provided by having students draw a circle and triangle with compasses and drawing vertical and parallel lines with a set square. The purpose of this study was to examine the mathematical thinking of sixth-grade elementary school students in the construction process in a bid to give some suggestions on elementary construction guidance. As a result of teaching the sixth graders in gifted and nongifted classes about the equal division of line segments and evaluating their mathematical thinking, the following conclusion was reached, and there are some suggestions about that education: First, the sixth graders in the gifted classes were excellent enough to do mathematical thinking such as analogical thinking, deductive thinking, developmental thinking, generalizing thinking and symbolizing thinking when they learned to divide line segments equally and were given proper advice from their teacher. Second, the students who solved the problems without any advice or hint from the teacher didn't necessarily do lots of mathematical thinking. Third, tough construction such as the equal division of line segments was elusive for the students in the nongifted class, but it's possible for them to learn how to draw a perpendicular at midpoint, quadrangle or rhombus and extend a line by using compasses, which are more enriched construction that what's required by the current curriculum. Fourth, the students in the gifted and nongifted classes schematized the problems and symbolized the components and problem-solving process of the problems when they received process of the proble. Since they the urally got to use signs to explain their construction process, construction education could provide a good opportunity for sixth-grade students to make use of signs.
School algebra starts with introducing algebraic expressions which have been one of the cognitive obstacles to the students in the transfer from arithmetic to algebra. In the recent studies on the teaching school algebra, algebraic thinking is getting much more attention together with algebraic expressions. In this paper, we examined the processes of the transfer from arithmetic to algebra and ways for teaching early algebra through algebraic thinking factors. Issues about algebraic thinking have continued since 1980's. But the theoretic foundations for algebraic thinking have not been founded in the previous studies. In this paper, we analyzed the algebraic thinking in school algebra from historico-genetic, epistemological, and symbolic-linguistic points of view, and identified algebraic thinking factors, i.e. the principle of permanence of formal laws, the concept of variable, quantitative reasoning, algebraic interpretation - constructing algebraic expressions, trans formational reasoning - changing algebraic expressions, operational senses - operating algebraic expressions, substitution, etc. We also identified these algebraic thinking factors through analyzing mathematics textbooks of elementary and middle school, and showed the middle school students' low achievement relating to these factors through the algebraic thinking ability test. Based upon these analyses, we argued that the readiness for algebra learning should be made through the processes including algebraic thinking factors in the elementary school and that the transfer from arithmetic to algebra should be accomplished naturally through the pre-algebra course. And we searched for alternative ways to improve algebra curriculums, emphasizing algebraic thinking factors. In summary, we identified the problems of school algebra relating to the transfer from arithmetic to algebra with the problem of teaching algebraic thinking and analyzed the algebraic thinking factors of school algebra, and searched for alternative ways for improving the transfer from arithmetic to algebra and the teaching of early algebra.
The purpose of this research is to study and learn more features how this type of distribution for communication in $6^{th}$ grade first semester elementary science and mathematics according to communicative expression by 2009 revised curriculum. For this study, based on an analysis standard presented in previous research on the types of communication. The results of this research are as follows. First, because the mathematics presents the number of ways to communicate twice more than science, mathematics go through with much more problems to solve than science. Second, in mathematics, spoken method and written method have similar proportion, less in physical activity method. Third, Science showed balanced proportion among four areas; earth, life, energy, and material. On the other hand, mathematics only showed small numbers in the area of geometry but similar numbers in number and operations, regularity, measurement. Fourth, there is no common feature or relevance about communicative approach for convergence thinking in 2009 revised curriculum, it seems that it doesn't consider it as a revised.
For this study, the 'Game Activities' lessons presented in the math textbooks from the 1st grade to the 6th were examined in terms of learning materials, the learning members' make-up, the playing structures, and the relation with the contents. In addition, the survey by means of questionnaires was conducted to analyze the actual condition of teachers' guidance in the field. The findings from this research were as follows: First, as for the activities presented in the textbooks, it turned out that too much emphasis is placed upon plays mainly using learning materials such as cards and dice played by teams of two. In addition, there have been shown negative aspects in various ways of plays putting too much emphasis on certain types of plays such as and structures. As for the relation with the contents, although lots of efforts were taken to connect the playing activity to the lesson contents, there were units presenting plays based on the preceding lesson's repeated activity, ones that have weak link with the contents. Second, it turned out that the teachers had negative attitude on the guidance using the 'Game Activities' lesson, although they were aware of the effects of playing in math learning. This seemed to result from the delicate variety and insufficient preparation for the play. Besides, the findings indicate that the appreciation and activity of the 'Game Activities' lesson presented as a way of performance evaluation. for play need to be provided in school or classrooms for teachers and students to make good use of them.
Journal of Elementary Mathematics Education in Korea
/
v.17
no.1
/
pp.1-17
/
2013
In this paper, firstly, 'value', 'vertices', 'height' are discussed, which are used in the multiple contexts. Then 'sketch', 'mental math', 'zero point oneth place/zero point zero oneth place/zero point zereo zero oneth place', 'number of place', 'natural number part/decimal part' are discussed, which are not used consistently. Finally, middle school mathematics terms 'distance', 'number line', 'the value of the expression' are discussed which are used in elementary school mathematics textbooks/workbooks. From these discussions, the following four suggestions are proposed as conclusions. First, as a mathematical term 'value' and 'distance' should be emphasized. As 'distance' is a middle school term, there is a need to consider the 'height' as 'the length of the line segment' instead of 'distance'. Second, 'number of place' which can be replaced with other suitable term, 'the value of the expression' including 'value of $20{\times}4$', 'natural number part/decimal part', 'vertex of pyramid/vertex of cone', 'mental math' should not be used. Third, there is a need to consider the use of 'mixed decimal' and 'proper decimal'. In addition, there is a need to expand the use of 'sketch'. Fourth, there is a need to consider the confirmation of 'number line' as an elementary school mathematics term. In addition, there is a need to consider to specify that 'decimal first place', 'decimal second place', 'decimal third place' can be used equivalently with 'zero point oneth place', 'zero point zero oneth place', 'zero point zereo zero oneth place' respectively.
The purpose of this study is to investigate the effects of classes using AlgeoMath on fifth grade elementary students' mathematical problem-solving skills and mathematical attitudes. For this purpose, the 'cuboid' section of the 5th grade elementary textbook based on AlgeoMath was reorganized. A total of 8 experimental classes were conducted using this teaching and learning material. And the quantitative data collected before and after the experimental lesson were statistically analyzed. In addition, by presenting instances of experimental lessons using AlgeoMath, we investigated the effectiveness and reality of classes using engineering in terms of mathematical problem-solving ability and attitude. The results of this study are as follows. First, in the mathematical problem-solving ability test, there was a significant difference between the experimental group and the comparison group at the significance level. In other words, lessons using AlgeoMath were found to be effective in increasing mathematical problem-solving skills. Second, in the mathematical attitude test, there was no significant difference between the experimental group and the comparison group at the significance level. However, the average score of the experimental group was found to be higher than that of the comparison group for all sub-elements of mathematical attitude.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.