• Title/Summary/Keyword: 초등학교 소프트웨어교육

Search Result 238, Processing Time 0.02 seconds

Teacher Training Program and Analysis of Teacher's Demands to Strengthen Artificial Intelligence Education (인공지능교육 역량 강화를 위한 교원 연수 프로그램과 교사 요구분석)

  • Jeon, In-Seong;Jun, Soo-Jin;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.4
    • /
    • pp.279-289
    • /
    • 2020
  • The purpose of this study is to apply the training program for teachers to strengthen the competence of artificial intelligence education in primary and secondary school teachers and to analyze its effectiveness and analyze teachers' demands for artificial intelligence education to provide basic research data. The referenced training program was designed based on the ADDIE model by selecting the educational contents based on the five core elements of AI, and teachers from the G Metropolitan Office of Education and the AI Education Research Association collaborated to develop the program. The effectiveness of the developed program and questionnaire of teacher needs analysis for AI teaching were examined for content validity. As a result of the training conducted by applying the developed program, satisfaction with each curriculum of the training and the possibility of application to the field were highly evaluated. It was found that teachers consider the need of teaching unplugged activities for AI education and basic AI experiences in elementary school level, and AI education contents including block programming languages and physical computing activities are needed to teach in middle school level.

Development of Digital and AI Teaching-learning Strategies Based on Computational Thinking for Enhancing Digital Literacy and AI Literacy of Elementary School Student (초등학생의 디지털·AI 리터러시 함양을 위한 컴퓨팅 사고력 기반 교수·학습 전략 개발)

  • Ji-Yeon Hong;Yungsik Kim
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.341-352
    • /
    • 2022
  • The wave of a knowledge and information society led by AI, Big Data, and so on is having an all-round impact on our way of life. Therefore the Ministry of Education is in a hurry to strengthen Digital Literacy, including AI and SW Education, by improving the curriculum that can cultivate basic knowledge and capabilities to respond to changes in the future society. It can be seen that establishing a foundation for cultivating Digital Literacy through all subjects and improving basic and in-depth learning in new technology fields such as AI linked to the information curriculum is an essential part for future society. However, research on each content for cultivating Digital and AI literacy is relatively active, while research on teaching and learning strategies is insufficient. Therefore in this study, a CT-based Digital and AI teaching and learning strategy that can foster that was developed and Delphi expert verification was conducted, and the final teaching and learning strategy was completed after evaluating instructor usability and analyzing learner effectiveness.

The Effects of Artificial Intelligence Convergence Education using Machine Learning Platform on STEAM Literacy and Learning Flow

  • Min, Seol-Ah;Jeon, In-Seong;Song, Ki-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.199-208
    • /
    • 2021
  • In this paper, the effect of artificial intelligence convergence education program that provides STEAM education using machine learning platform on elementary school students' STEAM literacy and learning flow was analyzed. A homogeneous group of 44 elementary school 6th graders was divided into an experimental group and a control group. The control group received 10 lessons of general subject convergence class, and the experimental group received 10 lessons of STEAM-based artificial intelligence convergence education using Machine learning for Kids. To develop the artificial intelligence convergence education program, the goals, achievement standards, and content elements of the 2015 revised curriculum to select subjects and class contents is analyzed. As a result of the STEAM literacy test and the learning flow test, there was a significant difference between the experimental group and the control group. In particular, it can be confirmed that the coding environment in which the artificial intelligence function is expanded has a positive effect on learners' learning flow and STEAM literacy. Among the sub-elements of convergence talent literacy, significant differences were found in the areas of personal competence such as convergence and creativity. Among the sub-elements of learning flow, significant differences were found in the areas such as harmony of challenge and ability, clear goals, focus on tasks, and self-purposed experiences. If further expanded research is conducted in the future, it will be a basic research for more effective education for the future.

The predictability of science experience, school support and learning flow on the attitude of scientific inquiry in physical computing education (피지컬 컴퓨팅 교육에서 과학적 탐구 태도에 대한 과학경험, 교육지원, 학습몰입의 예측력 규명)

  • Kang, Myunghee;Jang, JeeEun;Yoon, Seonghye
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.1
    • /
    • pp.41-55
    • /
    • 2017
  • The physical computing education, as the emerging field, is a form of education that helps learners to develop the attitude of scientific inquiry by developing meaningful and creative output through the integration of hardware and software elements. Based on the literature, the authors of the study used science experience, school support and learning flow as the variables that predict the outcome variable which is the attitude of scientific inquiry. The authors collected data from 64 fourth and sixth graders who studied physical computing at an institution for the gifted and talented in Korea and then analyzed them using descriptive statistics, correlation, multiple regression and simple mediation analysis methods. As a result, science experience and learning flow significantly predicted the attitude of scientific inquiry. In addition, learning flow mediated the relationship between science experience and the attitude of scientific inquiry, and the relationship between school support and the attitude of scientific inquiry. Based on these results, the authors propose that to promote the attitude of scientific inquiry in physical computing education, strategies must be implemented for improving science experience, school support and learning flow in instructional design.

Study on the Learning Elements of 'Information Ethics' Topic of Informatics Subject (정보 교과의 '정보 윤리' 주제의 학습 요소에 관한 연구)

  • Jeong, InKee;Kim, Kapsu
    • Journal of The Korean Association of Information Education
    • /
    • v.18 no.2
    • /
    • pp.295-306
    • /
    • 2014
  • A form of life is changed rapidly through development of ICT. And we need information ethics as a new norm of information-oriented society. The effect of information ethics can be maximized by education. Therefore, a new curriculum is demanded by new technology and circumstance. Korea Association of Information education has studied a new curriculum and suggested a new plan that contents of information education classified by 'Software', 'Computer System' and 'Convergence Activities' sections. And the 'Convergence Activities' section is composed of 'Information Ethics', 'Productivity Tools' and 'Robot'. In this paper, we studied on learning elements of the 'Information Ethics' of first grade to ninth grade. We analysed the domestic and foreign curriculum, research results and new issues about information ethics and selected the learning elements about information ethics. We nextly suggested the achievement goals, teaching-learning methods and evaluation methods of information ethics. We expect that the learning elements we suggested about information ethics will contribute to deal with wisely information dysfunction and to training correct talented individuals.

Development of the Heuristic Attention Model Based on Analysis of Eye Movement of Elementary School Students on Discrimination task (변별과제에서 초등학생의 안구운동 분석을 통한 발견적 주의 모델 개발)

  • Shin, Won-Sub;Shin, Dong-Hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1471-1485
    • /
    • 2013
  • The purpose of this study was to develop a HAM (Heuristic Attention Model) by analyzing the difference between eye movements according to the science achievement of elementary school students on discrimination task. Science achievement was graded by the results of the Korea national achievement test conducted in 2012 for a random sampling of classes. As an assessment tool to check discrimination task, two discrimination measure problems from TSPS (Test of Science Process Skill, developed in 1994) which were suitable for an eye tracking system were adopted. The subjects of this study were 20 students from the sixth grade who agreed to participate in the research. SMI was used to collect EMD (eye movement data). Experiment 3.2 and BeGaze 3.2 programs were used to plan experiments and analyze EMD. As a result, eye movements of participants in discrimination tasks varied greatly in counts and duration of fixation, first fixation duration, and dwell time, according to students' science achievement and difficulty of the problems. By the analysis of EMD, strategies of the students' problem-solving could be found. During problem solving, subjects' eye movements were affected by visual attention; bottom-up attention, top-down attention and convert attention, and aflunter attention. In conclusion, HAM was developed, and it is believed to help in the development of a science learning program for underachievers.

The educational models using enhanced mathematics ICT in the Korean IT environments (21세기 선진형 ICT 수학 교육 방법론 모델)

  • Kim, Duk-Sun;Park, Jin-Young;Lee, Sang-Gu
    • Communications of Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.533-543
    • /
    • 2008
  • Recently, many advanced countries have used original ICT tools in their educational courses. But Korea didn't have any effective origin ICT tools in our mathematical education, compared with other countries which have developed various tools, for examples, Web-Mathematica and HP Calculator. Although we have the advanced IT environment, the educational environments in mathematics using ICT seems to be not promising. In this paper, we suggest a new mathematics education tools in ICT and the internet environments in Korea, and a teaching and studyingmodel for the teachers, students and classrooms. It is based on the Sage-Math and RPG. Sage-Math which is the software based on the web and RPG(Random Problem Generator) will give a good answer for the future of Korean mathematics ICT education.

  • PDF

Impacting Student Confidence : The effects of using virtual manipulatives and increasing fraction understanding. (수학에 대한 자신감 증진: 가상학습교구를 통한 분수 개념 이해의 결과)

  • ;Jenifer Suh;Patricia S. Moyer
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.2
    • /
    • pp.207-219
    • /
    • 2004
  • There have been studies reporting the increase in student confidence in mathematics when using technology. However, past studies indicating a positive correlation between technology and confidence in mathematics do not explain why they see this positive outcome. With increased availability and easy access to the Internet in schools and the development of free online virtual manipulatives, this research was interested in how the use of virtual manipulatives in mathematics can affect students confidence in their mathematical abilities. Our hypothesis was that the classes using virtual manipulatives which allows students to connecting dynamic visual image with abstract symbols will help students gain a deeper conceptual understanding of math concept thus increasing their confidence and ability in mathematics. The participants in this study were 46 fifth-grade students in three ability groups: one high, one middle and one low. During a two-week unit on fractions, students in three groups interacted with several virtual manipulative applets in a computer lab. Data sources in the project included a pre and posttest of students mathematics content knowledge, Confidence in Learning Mathematics Scale, field notes and student interviews, and classroom videotapes. Our aim was to find evidence for increased level of confidence in mathematics as students strengthened their understanding of fraction concepts. Results from the achievement score indicated an overall main effect showing significant improvement for all ability groups following the treatment and an increase in the confidence level from the preassessment of the Confidence in Learning Mathematics Scale in the middle and high ability groups. An interesting finding was that the confidence level for the low ability group students who had the highest confidence level in the beginning did not change much in the final confidence scale assessment. In the middle and high ability groups, the confidence level did increase according to the improvement of the contest posttest. Through interviews, students expressed how the virtual manipulatives assisted their understanding by verifying their answers as they worked and facilitated their ability to figure out math concept in their mind and visually.

  • PDF