• Title/Summary/Keyword: 초기하중

Search Result 923, Processing Time 0.026 seconds

Initial Shear Strength of Hollow Sectional Columns Subjected to Lateral Force (횡하중을 받는 RC 중공단면 기둥의 초기전단강도)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.1-14
    • /
    • 2009
  • Ductility-based seismic design is strongly required for the rational and cost-effective design of RC piers, and a reliable evaluation of shear strength is indispensable for its success. Unlike the flexural behavior of RC columns, shear behavior is highly complex, due to its many effects such as size, aspect ratio, axial force, ductility and so on. To address this, many design and empirical equations have been proposed considering these effects. However, these equations show significant differences in their evaluation of the initial shear strength, and the reduction in strength with the increase of ductility. In this study, the characteristics of initial shear strength of hollow sectional columns were investigated using experiments with the parameters of aspect ratios, void ratios, web area ratios and load patterns. The test results were analyzed through a comparison with the values predicted by empirical equations. On the basis of the mechanical characteristics and test results, a new empirical equation was proposed, and its validity was assessed.

Evaluation of the Effect of Initial Condition of the Granular Assembly on the Bearing Capacity of the Shallow Foundation using Photoelastic Measurement Technique (광탄성 측정 기법을 이용한 입상체 초기 조건의 얕은 기초 지지력에 대한 영향 평가)

  • Shin, Sang-Young;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.471-491
    • /
    • 2016
  • Traditional limit equilibrium method needs an assumption of the failure surface to calculate the bearing capapcity of the shallow foundation. From the viewpoint of the mechanics of granular materials, however, the failure of the soil mass is initated by the local buckling of the contact force chains. In this study we observed the directional distribution of the contact force chains in the granular assembly stacked by model particles subjected to the model shallow foundation during loading. Two sets of the assemblies with a regular structure and initially local imperfection were prepared for tests. Existence of the initial local imperfection has a significant effect on the directional distribution of the contact force chains. The bearing capacity of the assembly with local imperfection is only 67% the capacity of the assembly with the regular structure.

Behavior of a Shape Memory Alloy Actuator with Composite Strip and Spring (복합재료 스트립과 스프링을 갖는 형상기억합금 작동기의 거동)

  • Heo, Seok;Hwang, Do-Yeon;Choi, Jae-Won;Park, Hoon-Cheol;Goo, Nam-Seo
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.37-42
    • /
    • 2009
  • This paper presents an experimental approach to design a bending-type actuator by using a shape memory alloy wire (SMA), composite strip, and spring. The SMA wire is attached to two edges of the bent strip to apply pre-stress to the SMA wire. The spring is used to provide recovery force right after actuation of the SMA wire. To investigate thermo-mechanical characteristics of the SMA wire, a series of DSC tests have been conducted and tensile tests under various levels of pre-stress and input power have been performed. Based on the measured properties of the SMA wire, bending-type actuators are designed and tested for different combination of strip, number of springs, and input power. It has been found that a bending-type actuator with a proper combination shows fast actuation performance and low power consumption.

Simplified Static Analysis of Superstructure on Very Large Floating Structures subjected to Wave Loads (파랑하중을 받는 초대형 부유식 구조물 상부구조체의 실용정적해석법)

  • Song, Hwa-Cheol;Park, Hyo-Seon;Seo, Ji-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.519-526
    • /
    • 2003
  • For preliminary structural analysis of superstructures on very large floating structures(VLFS), superstructures are analyzed considering elastic deformations of barge type lower-structures subjected to wave loads. In this case, to consider the effect of wave loads on the superstructure, initial displacements at the support points of superstructures are evaluated as input data for the analysis. However, the evaluation and application of displacement loads are tedious and very time-consuming processes. Therefore, this paper proposes a simplified static analysis method to analyze the structural behaviors of superstructures on very large floating structures subjected to wave loads. In this study, the member forces due to the variation of beam span and the amplitude and period of wave load are analyzed by using an example 4 span -3 story structure and the amplification factors for beam moments are represented by the specific regression equation.

Nondestructive Buckling Load Prediction of Pressurized Unstiffened Metallic Cylinder Using Vibration Correlation Technique (Vibration Correlation Technique을 이용한 내부 압력을 받는 금속재 단순 원통 구조의 비파괴적 전역 좌굴 하중 예측)

  • Jeon, Min-Hyeok;Kong, Seung-Taek;Cho, Hyun-Jun;Kim, In-Gul;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Yeoung-Ha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.75-82
    • /
    • 2022
  • Nondestructive method to predict buckling load for the propellant tank of launch vehicle should be evaluated. Vibration correlation technique can predict the global buckling load of unstiffened cylindrical structure with geometric initial imperfection using correlation of natural frequency and compressive load from compressive test below the buckling load. In this study, vibration and buckling tests of a thin metal unstiffened propellant tank model subjected to internal pressure and compressive loads were performed and the test results were used for VCT to predict global buckling load. For the vibration test of thin structure, non-contact excitation method using a speaker was used. The response was measured with piezoelectric polymer(PVDF) sensor. Prediction results of VCT were compared with the measured buckling load in the test and the nondestructive global buckling load prediction method was verified.

A Study on the Thermo-Mechanical Fatigue Loading for Time Reduction in Fabricating an Artificial Cracked Specimen (열-기계적 피로하중을 받는 균열시편 제작시간 단축에 관한 연구)

  • Lee, Gyu-Beom;Choi, Joo-Ho;An, Dae-Hwan;Lee, Bo-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • In the nuclear power plant, early detection of fatigue crack by non-destructive test (NDT) equipment due to the thermal cyclic load is very important in terms of strict safety regulation. To this end, many efforts are exerted to the fabrication of artificial cracked specimen for practicing engineers in the NDT company. The crack of this kind, however, cannot be made by conventional machining, but should be made under thermal cyclic load that is close to the in-situ condition, which takes tremendous time due to the repetition. In this study, thermal loading condition is investigated to minimize the time for fabricating the cracked specimen using simulation technique which predicts the crack initiation and propagation behavior. Simulation and experiment are conducted under an initial assumed condition for validation purpose. A number of simulations are conducted next under a variety of heating and cooling conditions, from which the best solution to achieve minimum time for crack with wanted size is found. In the simulation, general purpose software ANSYS is used for the stress analysis, MATLAB is used to compute crack initiation life, and ZENCRACK, which is special purpose software for crack growth prediction, is used to compute crack propagation life. As a result of the study, the time for the crack to reach the size of 1mm is predicted from the 418 hours at the initial condition to the 319 hours at the optimum condition, which is about 24% reduction.

Bearing Properties of Domestic Larix Glulam (국내산 낙엽송집성재의 지압특성)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.93-101
    • /
    • 2008
  • Bearing strength test was investigated to determine the bearing properties of domestic larix glulam according to the load direction (in parallel to grain and in perpendicular to grain), the fastener (bolt and drift-pin), and the direction of laminae. The specimen was 5 ply glulam. The diameters of fastener are 12, 16 and 20 mm. The results were as follows. 1) In according to the diameter of bolt and drift-pin, the average of maximum bearing strength in parallel to grain loading was similar to that in perpendicular to grain loading. The average of maximum bearing strength was 1.50~2.31 times higher in parallel to grain loading than in perpendicular to grain loading. The average of maximum bearing strength in parallel to grain loading was lowered by 20% with increasing the diameter from 16 mm to 20 mm, but that in perpendicular to grain loading didn't show a clear tendency. 2) The average of bearing stiffness in parallel to grain loading was the highest at 16 mm in diameter. The average of bearing stiffness is similar to the shearing stiffness in drift-pin connection with increasing diameter. 3) In parallel to grain loading, the failure mode of specimens was the splitting along the grain in decreasing diameter. The failure mode in perpendicular to grain loading was the splitting along the grain. In this case, split occured more in specimens using bolt than in those using drift-pin. 4) The 5% offset yield strength in parallel to grain loading was similar to the predicted bearing strength of KBCS, NDS. In perpendicular to grain loading, the NDS's equation can be applied to predict the bearing strength.

Stiffness Test of Dowel Bar for fainted Concrete Pavement (콘크리트 포장의 다웰바 전단거동 실험)

  • Yang, Sung-Chul;Choi, Jae-Gon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Shear test procedure for concrete-dowel interaction was proposed along with determination of dowel support reaction factor or shear spring stiffness constant using the spreadsheet example. For this task, three AASHTO-type standard specimens were prepared to simulate behavior of the jointed concrete pavement. A side support system was adopted to minimize twisting of the test specimen which had been observed in a preliminary test. A typical elastic behavior of the dowel-concrete interaction was observed from several test loops of loading, unloading and reloading procedures. However load versus slab displacement represents to be nonlinear. Test results show that the dowel support reaction factor ranges from 550-880 GN/m3, which is 1.4-2.2 times greater than 407GN/m3 proposed by Yoder and Witczak. This is because less torsional distraction was occurred with the help of a side support system adopted in this experiment. The dowel support reaction factor or shear spring stiffness constant obtained from the procedures proposed in this paper may be used as a reference data for the structural analysis of jointed concrete pavement.

  • PDF

Cyclic Strength Characteristics of Soft Clay (주기적(週期的) 반복하중(反復荷重)에 의한 연약점토(軟弱粘土)의 강도특성(强度特性))

  • Ha, Kwang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.49-58
    • /
    • 1984
  • A series of cyclic triaxial tests were carried out on undisturbed samples to clarify the cyclic behavior of Bangkok(Ransit) soft clay. Based on the test results obtained from the cyclic tests employing different initial shear stress and different confining stress, the cyclic properties of clay such as shear strain development and cyclic strength were investigated. The results showed that with increase in the initial shear stress, the stress-strain curve was flattened to some extent. The cyclic strength expressed by the stress ratio was higher in the test with $1.0kgf/cm^2$ of confining stress, while the cyclic strength expressed by the deviator stress was higher in the test with $1.5kgf/cm^2$ of confining stress.

  • PDF

An Experimental Study on the Structural Performance of Horizontally Curved Precast PSC Girder (프리캐스트 곡선 PSC 거더의 구조 성능에 관한 실험연구)

  • Lee, Doo Sung;Choi, Woo Suk;Kim, Tae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.747-757
    • /
    • 2015
  • The main purpose of this study is to investigate the static behavior of a horizontally curved prestressed concrete (PSC) girder. A 30m long full-scale curved PSC girder with 80.0m radius is fabricated by a portable curved form system. Deflections and concrete strains at the middle of span were measured. The obtained experimental results have been compared to those from F.E.A. analysis. When a initial crack developed, the applied load was 1.3 times the service design load and the vertical deflection at the middle of span satisfied the requirement for a live load state according to the Korea Bridge Design Specifications (2010). Also, the ductility of the full scale specimen satisfied the limit in the Specifications (2010). To verify the experimental results, a numerical F.E. analysis was carried and confirmed that the data were similar with results from the test above. The horizontally curved PSC girder fabricated on site was found to have enough strength for safety under and after construction.