• Title/Summary/Keyword: 초기재령 압축강도

Search Result 187, Processing Time 0.028 seconds

Autogenous Shrinkage of High Performance Concrete Containing Ply Ash (플라이애시를 함유한 고성능 콘크리트의 자기수축)

  • 이회근;임준영;이광명;김병기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.249-256
    • /
    • 2002
  • High performance concrete is prone to large autogenous shrinkage due to its low water to binder ratio (W/B). The autogenous shrinkage of concrete is caused by self-desiccation as a result of water consumption by the hydration of cement. In this study, the autogenous shrinkage of high performance concrete with and without fly ash was Investigated. The properties of fresh concrete, slump loss, air content, and flowability as well as the mechanical properties, compressive strength and modulus of elasticity, were also measured. Test results was shown that the autogenous shrinkage of concrete increased as the W/B decreased. For the same W/B, the autogenous shrinkage of high strength concrete with fly ash was considerably reduced although the development of its compressive strength was delayed at early ages. Furthermore, the autogenous shrinkage and compressive strength of high strength concrete were more rapidly developed than those of normal strength concrete. It was concluded that fly ash could improve the quality of high strength concrete with respect to the workability and autogenous shrinkage.

Tests on Magnesium Phosphate Composite Mortar Mixtures with Different Molar Ratios of MgO-to-KH2PO4 (MgO-KH2PO4 몰비 변화에 따른 마그네시아-인산염 모르타르의 배합실험)

  • Yoon, Hyun-Sub;Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2017
  • The objective of this study is to seek a reliable mixture proportion for magnesium potassium phosphate composite(MKPC) mortars with a near-neutral pH value (below 9.5) and a relatively good compressive strength exceeding 30MPa. The main parameter selected was the molar ratios($M_{mp}$) of $MgO-to-KH_2PO_4$ which varied from 30.4 to 3.4. The setting time of the MKPC mortars tended to shorten with a decrease in $M_{mp}$ value. With regard to the strength development ratio normalized by the 28-day strength, the ranges measured in the mortars with an $M_{mp}$ below 7.9 were 50~61% at 1 day and 60~73% at 3 days, indicating a highly rapid early-strength development. With a decrease in $M_{mp}$, the formation of struvite-K crystal identified as a primary hydration product increased, which led to the decrease of the macro-capillary pores in micro-structures. For achieving the targeted requirements for pH value and compressive strength, the $M_{mp}$ needs to be selected as below 5.1.

A Fundamental Experiment on Preventing Frost Damage at Early Age of Mortar in Low Temperature using Reduction Slag (환원슬래그를 사용한 모르타르의 저온에서의 초기동해 방지에 관한 기초적 실험)

  • Min, Tae-Beom;Mun, Young-Bum;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Kim, Jae-Young;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In this research, it used cement powder and reduction slag, which generates high hydration heat in hydration reaction without heat cure below $-5^{\circ}C$ degree. Purpose of final research is preventing freezing and thawing by making the compressive strength 5MPa in 3days below zero temperature due to own heat of concrete. and it is the result of physical characteristic and thermal property evaluation of reduction slag. Because reduction slag generates high hydration heat, compressive strength development is excellent. By generating highly hydration heat by $C_{12}A_7$ and $C_3A$ in reduction slag, compressive strength is developed in low temperature. In case of displacing only reduction slag without $SO_3$, it is indicated that quick-setting occurs by shortage of $SO_3$. For preventing quick-setting, gypsum is used essentially. According to this research result, in case of using reduction slag and gypsum as a ternary system, compressive strength developed 5MPa in 3 days below zero temperature. It is identified to prevent early frost damage of concrete below zero temperature.

Effect of Early Compressive Strength Development with Blast Furnace Slag Using Various stimulants Mortar. (각종자극제가 고로슬래그 미분말 혼입 모르타르의 초기재령 압축강도 발현에 미치는 영향)

  • kim, Jin-Hyoung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.57-58
    • /
    • 2011
  • In the experiment, we add to NaOH, Ca(OH)2 and Calcium Hydroxide as the Slag stimulus also mixed the cement stimulus such as NaSCN, TEA and CaCl2 for improving compressive strenth of concrete which added the Blast Furnace Slag Powder at 1 and 3 days. In the result of strength test, It showed that 2percentage of activator 1 and 5percentage Ca(OH)2, 1percentage of activator 3 and 5percentage of Ca(OH)2 are higher than 100 percentage OPC.

  • PDF

Shrinkage Characteristics of 50MPa High-strength Concrete with Compositions of Cementitious Materials (결합재 구성에 따른 50MPa급 고강도 콘크리트의 수축 변형 특성)

  • Jung, Hyung-Chul;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.93-100
    • /
    • 2009
  • This study forms part of a research project that was carried out on the development and application of high-strength concrete for large underground spaces. In order to develop 50MPa high-strength concrete, eight optimal mixtures with different portions of fly ash and ground granulated blast furnace slag were selected. For assessments of shrinkage characteristics, free shrinkage tests with prismatic specimens and shrinkage crack tests were performed. The compressive strength was more than 30MPa at 7days, and stable design strength was acquired at 28days. High-strength concrete containing blast furnace slag shows large autogenous shrinkage, while large shrinkage deformations and cracks will occur when mixtures are replaced with large volumes of cementitious materials. Hence, for these high-strength concrete mixtures, the curing conditions of initial ages that affect the reaction of hydration and drying effects need to be checked.

A Study on Performance Evaluation of Early-age Concrete with EOS Fine Aggregate and GGBFS (EOS 잔골재 및 GGBFS를 혼입한 초기재령 콘크리트의 성능 평가에 관한 연구)

  • Kwon, Seung Jun;Cho, Sung Jun;Lim, Hee Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.113-119
    • /
    • 2019
  • Many researches on alternative materials as construction materials is continuing by recycling industrial byproducts due to shortage of sitereclamation and natural aggregates. In this paper, engineering properties in early-aged OPC (Ordinary Portland Cement) and GGBFS (Ground Granulated Blast Furnace Slag) concrete are evaluated with EOS aggregate replacement. The related experiments were carried out with 0.6 of water to binder ratio, three levels of EOS replacement ratios (0%, 30% and 50%) for fine aggregate, and two levels of cement replacement with GGBFS (0% and 40%). Several tests such as slump air content, and unit mass measurement are performed for fresh concrete, and compressive strength and diffusion coefficient referred to NT BUILD 492 method are measured for hardened concrete. Through the tests, it was evaluated that the compressive strength in concrete with EOS aggregate increased to 3 days and 7 days but slightly decreased at the age of 28 days. In the accelerated chloride penetration test, GGBFS concrete showed reduced diffusion coefficients by 60 - 67% compared with OPC concrete. The lowest chloride diffusion coefficient was evaluated in the 50% replacement with EOS aggregate, which showed an applicability of EOS aggregate to concrete production.

Strength Development and Freeze-Thaw Resistance of Concrete Incorporating High Volume Blast-Furnace Slag Subjected to Initial Frost Damage (초기동해를 받은 고로슬래그 다량 혼입 콘크리트의 강도발현 및 동결융해 저항성)

  • Koh, Kyung-Taek;Ryu, Gum-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.79-87
    • /
    • 2011
  • Concrete incorporating high volume blast-furnace slag placed in cold weather regions might be in danger of initial frost damage because dependently on the mix proportions, the setting and the hardening would be remarkably delayed. Therefore, this study investigated to effect of the degree of frost on the strength development and the resistance to freezing and thawing of the concrete incorporating blast-furnace slag when being subjected to freeze at early age. As the experimental results, the concrete incorporating blast-furnace slag attacked by initial frost damage showed the remarkable reduction of both the compressive strength development and the resistance to freezing and thawing. Especially, the resistance to freezing-thawing of the concrete incorporating high volume blast-furnace slag became much lower than that of the normal concrete.

  • PDF

Mechanical Behavior and Characteristics of Internal Temperature and Relative Humidity of Concrete at Early Age (초기재령 콘크리트의 역학적 특성 및 온·습도 거동 특성 분석)

  • Park, Cheol Woo;Lee, Bong Hak;Hong, Seung Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.184-194
    • /
    • 2011
  • This study is to analyze the internal temperature and relative humidity of concrete at early age, as well as the mechanical behavior. Three different levels of cement unit content were cosidered as an experimental variable. In order to measure internal temperature and relative humidity immediately after concrete placement, this study developed a unique measuring device, which provided reliable results. Different cement content did not significantly affected the strengths including compressive, tensile and flexural strength and after 7 days of curing, strengths did not increase noticeably. Internal temperature reached the maximum about 11 hours later the placement and decreased after removal of forms. The internal temperature varied depending on the location and the exposure condition. In addition, the internal relative humidity was more affected by the exposure condition rather than the cement content.

The Effect of Replacement Ratio of Mineral Admixtures and Curing Condition on Compressive Strength of Hot Weather Concrete (혼화재 치환율 및 양생조건이 서중콘크리트의 압축강도에 미치는 영향)

  • Kong, Tae-Woong;Lee, Soo-Hyung;Jang, Jae-Hwan;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.629-632
    • /
    • 2008
  • As concrete is a material which is subject to wide quality fluctuations by temperature, grip of seasonal feature and maintenance of ambient temperature and humidity to secure the quality required after casting concrete are able to keep away from harmful effects. In case of summer, a high temperature has caused rapid hydration reaction of cement in early age, which has caused to decrease strength by autogenous shrinkage. Therefore we need to consider a countermeasure for decrease in the hydration heat of hot-weather concrete, according to minimize water and cement content and use mineral admixtures In this experimental research, the compressive strength development for replacement ratio of mineral admixtures, curing temperature and methods of concrete was investigated to confirm the effects of mixture design and curing condition on compressive strength of concrete.

  • PDF

Fundamental characteristics of high early strength low heat concrete according to mineral binder and high early strength material combination (광물질 결합재 및 조강형 재료 조합에 따른 조강형 저발열 콘크리트의 기초적 특성)

  • Kim, Kyoungmin;Son, Hojung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • This study analyzed the fundamental characteristics of concrete according to a ternary system mixing in order to reduce hydration heat of mass concrete and to improve early age strength. The results are as follows. The fluidity of unconsolidated concrete satisfied the target scope regardless of the binder conditions. When the replacement ratio between FA and BS increased, the slump of low heat-A mix and low heat-B mix increased, and air content was not affected by the change of binders. As for setting time, low heat cement mix had the fastest regardless of W/B, and high early strength low heat mix achieved 6 hours' reduction compared with low heat-B mix at initial set, and 12 hours' reduction at the final set respectively. As for the simple hydration heat, the low mix peak temperature was the highest and low heat-B mix had the lowest temperature. And high early strength low heat mix was similar with that of low heat-B. The compressive strength of hardened concrete had similar strength scope in all mixes except for low heat-B mix at early ages, and had unexceptionally similar one without huge differences at long-term ages.