• Title/Summary/Keyword: 초기굴진

Search Result 13, Processing Time 0.023 seconds

Experimental study on the longitudinal load transfer of a shallow tunnel depending on the deformation tunnel face (I) (얕은 터널의 굴진면 변형에 따른 종방향 하중전이 특성에 대한 실험적 연구(I))

  • Kim, Yang Woon;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.487-497
    • /
    • 2016
  • If a tunnel is excavated, the released stress is redistributed in the ground around the tunnel face, which lead the stress state of the surrounding ground of the tunnel and the load acting on the tunnel support to change. If the tunnel face deforms, the ground ahead of it is relaxed, and the earth pressure acting on it decreases. And if the displacement increases so much that, the ground ahead of the tunnel face reaches in failure state. At this time, load would be transferred longitudinally in the tunnel, depending on the cover and the face deformations. The longitudinal load transfers in the tunnels induced by the tunnelling has been often studied; however, the relation between the deformation of the tunnel face and the longitudinal load transfer was rarely studied. Therefore in this study assesses the characteristics of the longitudinal load transfer as the face was failed by displacement by conducting a model test in a shallow tunnel. In other words, the longitudinal load transfer of the tunnel with the progress of the face deform was measured by conducting a model test, beginning at the state of earth pressure at rest. As results of this study, most of the longitudinal load transfers occurred drastically at the beginning of the displacement of the tunnel face, and as the displacement of the face approached the ultimate displacement, it converged to the ultimate displacement at a gentler slope. In other words, when the ground ahead of the tunnel face was still in an elastic state, the longitudinally transferred load increased sharply at the beginning stage but it tended to increase gradually if it approached to the ultimate limit. Thus, it was noted that the earth pressure in the face and the longitudinal load transfer of the tunnel had the same decreasing tendency.

A Case Study of Delay Analysis for E.P.B Shield TBM Method in Construction Site (E.P.B(Earth Pressure Balance) Shield TBM 공사의 공기지연 사례연구)

  • Kwak, Jun-Hwan;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.737-743
    • /
    • 2009
  • Shield TBM, since it was employed for Suyoungman Bay riverbed tunnel of Busan Subway in 2000,has been increasingly adopted in Korea, and in line with growing popularity, the study on Shield TBM has been expanded. However the studies mostly focus on ground condition in a bid to estimate the advancement rate and develop the model for calculating the excavation efficiency, whereas the efforts to analyze the cause of delay and to develop the improvement measures have been neglected. Thus the studies were mostly intended to analyze the schedule slippage focusing on ground conditions, while the study on schedule behind due to equipment itself and related facilities have yet to be attempted in earnest. This study hence was aimed at evaluating the troubles and schedule slippage caused by mechanical elements such as shield TBM equipment and tools and ground conditions, making use of FMEA approach so as to analyze the risk of schedule delay by such elements, thereby proposing the preventive measures to deal with high-risk factors. So, this study suggest the solution to highly ranked trouble factor for the purpose of enhance the efficiency on Shield TBM.

Analysis on Downtime element of Gripper TBM based on field data (현장 데이터 분석을 통한 Gripper TBM의 Downtime 요소 분석)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.393-402
    • /
    • 2021
  • The first TBM introduced in Korea was the gripper TBM, which was applied to the Gudeok Waterway Tunnel in 1985. In the initial stage of the introduction of the gripper TBM, many applications were mainly focused on waterway tunnels (Tunnel Mechanized Construction Design, 2008). Currently, the construction range of gripper TBM in Korea is widely applied to not only waterway tunnels, but also subways, railway tunnels, and TBM+NATM expansion. Overseas, gripper TBM is generally applied, and even when NATM tunnel is applied, it is applied as an exploration tunnel because of the excellent advance rate of gripper TBM and used as an evacuation tunnel after completion. Due to the fast excavation speed, the application of the gripper TBM in the rock section of weathered rock or higher can minimize the environmental and civil complaints caused by creating a large number of work areas when planning long tunnels or mountain tunnels. In this study, the work process of the general gripper TBM was analyzed by analyzing the construction cycle and the gripper TBM with a diameter of 2.6~5.0 m, which was applied the most in Korea. Downtime was investigated and analyzed.

The Method of Tunnel Blasting for the Vibration Control by Deck Charge and Multiple Cut (다단장약에 의한 V-cut 발파공법의 진동제어효과와 발파효율증대에 관한 연구)

  • 두준기;양형식;김형건;김용국
    • Explosives and Blasting
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • 터널굴착발파공법의 하나인 V-cut발파공법은 터널굴착기술이 발전되는 과정에서 초기에 개발되어진 기술이나 작업의 간편성과 효율성으로 인하여 많은 터널굴착공사에서 이용되고 있는 발파공법이다. V-cut발파공법은 일자유면 상태에서 V형으로 심발공을 발파하고 심발공에 의해 형성된 자유면을 이용하여 확대공으로 굴착공간을 넓히는 발파 방법이며 심발발파의 굴진장에 의해 단일발파당 굴진장이 결정된다. V-cut발파법이 개발된 이래 V-cut발파의 굴진장을 증대시키기 위한 방법으로 심발발파공의 구속저항을 감소시키기 위해 보조심발공을 발파하여 형성된 자유면에 의해 심발공의 최소저항선거리를 줄여 발파하였으나 심발공의 구속저항이 감소되지 않아 발파효율이 증대되지 않았으며 발파진동 또한 가장 크게 발생하였다. 이와 같은 현상은 최소저항선거리의 감소효과에 대한 발파기술상의 이론에 문제가 있기 때문이다. 본 연구에서는 V-cut발파법의 심발공에 대한 구속저항감소효과가 발현될 수 있는 조건들을 검토하여 최소저항선거리의 감소효과가 발현될 수 있는 조건을 제시 하여 심발공의 발파효율을 증대시키고 발파진동이 적어지는 발파방법을 제안하려 한다.

Application of 3D Scanner for Tunnel Construction Using IT (터널 정보화 시공을 위한 3차원 스캐너의 활용 방안)

  • Son, Jae-Won;Min, Won;Ahn, Jae-Gyu;Heo, In-Wook
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.162-165
    • /
    • 2010
  • 우리나라 대형 건설시장의 하나인 터널 시공은 계획 대비 많은 물량과 자재의 소모로 인해 이들 정보의 지속적 관리를 통한 정확한 물량 및 자재 산출 정보 예측에 대한 관심이 꾸준히 요구되고 있는 실정이다. 대부분의 시공현장에서는 굴진의 정확도 검측을 위해 광파기를 사용하고 있다. 광파기는 공사 초기 시부터 유지된 원점으로부터의 정확한 좌표를 사용하고 있어 취득된 정보는 신뢰할 수 있으나, 몇 개의 기준점을 측량하여 굴진방향 및 공사의 진척도를 평가하는 방식이므로, 전체적인 면을 측정하지 못한다는 단점이 있다. 이에 반하여 3차원 스캐너는 제원에 따른 반경 내의 모든 점들을 계측하여 그 정보를 선이 아닌 면으로써 파악하지만 위치에 대한 정확도를 포함할 수 없다. 이러한 문제점을 보완하기 위하여, 광파기와 3차원 스캐너를 동시 활용하는 본 시스템은 현장에서 소모된 자원의 정확한 양을 체크하여 굴진정도를 파악하여 공사의 전반적인 진도를 관리할 수 있다. 또한 여굴의 발생 여부를 직접 확인하고 계획대비 소모된 물량정보를 통해 자재관리를 할 수 있게 된다. 마지막으로 추후 발생할 수 있는 하자에 대한 정확한 근거를 제시하여 균열 및 누수 등에 대한 정확한 원인 파악을 제공할 수 있다는 장점들을 제공한다.

  • PDF

A Study on the Estimation of Load Distribution Factors Considering Excavation Methods and Initial Stress Conditions (굴착방법과 초기지압 조건을 고려한 하중분배율의 산정 연구)

  • Park, Yeon-Jun;Ryu, Il-Hyung
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.192-204
    • /
    • 2011
  • In this study, 3-D analyses were conducted while taking every construction stage into account. Then 2-D analyses were conducted which yield the same results with the 3-D results. The crown settlement normalized by the ultimate value was compared during the process to overcome the discrepancy caused by different dimensions. When a bench or a core is left uncut to give extra support to the face and eventually the whole excavation boundary, this extra supporting effect also has to be included in the analysis. In this study, this effect is also implemented in terms of the load distribution factor. When the length of the bench is very short compared to the diameter of the tunnel in such cases as in short bench cut or in mini-bench cut, the supporting effect of the face does not disappear even after the bench is completely excavated and supported since the face is still too close to the point of interest. The 4th load distribution factor was defined to stand for the advance of the face after the completion of the excavation cycle. The 4th load distribution factor turned out to be very useful in determining the load distribution factors when a tunnel is excavated by bench cut with various bench lengths under different initial conditions.

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.

Use of the Tunnel Seismic Prediction Method for Construction of Spillways at Juam Dam (터널 내 탄성파탐사(TSP)기법의 주암댐 보조여수로 적용 사례 연구)

  • Bae, Jongsoem;Chang, Chandong
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.67-77
    • /
    • 2013
  • We conducted a Tunnel Seismic Prediction (TSP) survey in a spillway tunnel at Juam Dam to predict the locations of major discontinuities ahead of the tunnel face. We compared the results of the TSP survey with those from pre-construction inspections (including a surface resistivity survey and borehole investigations) as well as with direct tunnel-face mapping during excavation. The TSP method predicted the locations of major fracture zones that were unnoticed in the pre-construction inspections. The reinforcement patterns planned on the basis of pre-construction inspections were changed on the basis of the TSP results. The results demonstrate that TSP surveys are a cost-effective and reliably accurate method of predicting the locations of fracture zones. Although the TSP method has some limitations, these results suggest that the method is generally useful for predicting geological conditions prior to tunnel face construction.

Infiltration behaviour of the slurry into tunnel face during slurry shield tunnelling in sandy soil (사질성 지반에서 이수식 쉴드 TBM 적용시 굴진면으로의 이수 침투특성에 대한 해석적 고찰)

  • Roh, Byoung-Kuk;Koh, Sung-Yil;Choo, Seok-Yeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.261-275
    • /
    • 2012
  • This paper presents numerical analysis of the mud cake infiltration behaviour which is influenced tunnel face stability during excavation by slurry shield TBM. This analysis method can make useful data to select proper shield TBM type and to set up the construction plan. But effective analysis did not proposed until now. In this paper, we carried out numerical analysis using by $PFC^{2D}$ fluid coupling simulation which is suitable for sandy soil modelling. As a analysis result, we checked that the slurry infiltration behaviour varied with soil permeability and slurry characteristic(specific weight, viscosity etc). This analysis method is helpful safety excavation through anticipating the proper slurry viscosity at the design stage and verifying the slurry quality at initial excavation stage.

Prediction Model for Specific Cutting Energy of Pick Cutters Based on Gene Expression Programming and Particle Swarm Optimization (유전자 프로그래밍과 개체군집최적화를 이용한 픽 커터의 절삭비에너지 예측모델)

  • Hojjati, Shahabedin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.651-669
    • /
    • 2018
  • This study suggests the prediction model to estimate the specific energy of a pick cutter using a gene expression programming (GEP) and particle swarm optimization (PSO). Estimating the performance of mechanical excavators is of crucial importance in early design stage of tunnelling projects, and the specific energy (SE) based approach serves as a standard performance prediction procedure that is applicable to all excavation machines. The purpose of this research, is to investigate the relationship between UCS and BTS, penetration depth, cut spacing, and SE. A total of 46 full-scale linear cutting test results using pick cutters and different values of depth of cut and cut spacing on various rock types was collected from the previous study for the analysis. The Mean Squared Error (MSE) associated with the conventional Multiple Linear Regression (MLR) method is more than two times larger than the MSE generated by GEP-PSO algorithm. The $R^2$ value associated with the GEP-PSO algorithm, is about 0.13 higher than the $R^2$ associated with MLR.