• Title/Summary/Keyword: 초고강도 섬유보강 콘크리트

Search Result 86, Processing Time 0.036 seconds

Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동)

  • Guo, Qingyong;Han, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • The flexural behavior test of UHPC segmental box girder which has 160 MPa compressive strength and 15.4 m length was carried out. The effect of steel fibers in combination with reinforcing bars on improving the ductile performance of UHPC box girder was evaluated by comparing the flexural behavior of the UHPC segmental box girders made by the two kinds of mixing portion. The test variables are volume fraction of steel fibers and the arrangement of reinforcing bars. The behavior of UHPC box girder BF2 composed of 1% volume fraction of steel fibers and longitudinal reinforcing bars in web and upper flange with stirrup showed the similar ductile behavior with the girder BF1 composed of 2% volume fraction without stirrup in elastic stress region. But BF1 had the better stiffness and showed the more ductile behavior in inelastic stress region. Segmental interfaces of UHPC box girder have not any crack and slide until the final flexural collapse load.

Ultimate Shear Capacity of Prestressed Girder of Ultra High Performance Fiber Reinforced Concrete (초고강도 섬유보강 콘크리트 프리스트레스트 거더의 극한 전단력)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • This study is to investigate the ultimate shear load of prestressed girder made of Ultra High Performance Fiber Reinforced Concrete (UHPFRC). Nine girders were tested until failure in shear. An analytical model to predict the ultimate shear load was formulated based on the Two Bounds Theory. A fiber reinforcing model was constituted based on the random assumption of steel fiber uniform distribution. The predicted values were compared with the conventional predictions and the test results. The proposed equations for computing the ultimate shear strength can be used for the ultimate failure status analysis, which could also be utilized for numerical limit analysis of prestressed UHPFRC girder. The established fiber reinforcing theoretical model can also be a reference for micro-mechanics analysis of UHPFRC.

Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams (하이브리드 강섬유 보강 초고강도 콘크리트 보의 휨강도)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.283-290
    • /
    • 2015
  • This paper proposes a method for predicting flexural strength of hybrid steel fiber-reinforced ultra-high strength concrete beams. It includes an experimental test framework and associated numerical analyses. The experimental program includes flexural test results of hybrid steel fiber-reinforced ultra-high strength concrete beams with steel fiber content of 1.5% by volume. Tensile softening characteristics play an important role in the structural behavior of steel fiber-reinforced ultra high performance concrete. Tension softening modeling is carried out by using crack equation based on fictitious crack and inverse analysis in which load-crack mouth opening displacement relationship is considered. The comparison of moment-curvature curves of the numerical analysis results with the test results shows a reasonable agreement. Therefore, the numerical results confirms that good prediction of flexural behavior of steel fiber-reinforced ultra high strength concrete beams can be achieved by employing the proposed method.

Effect of fiber volume fraction on the tensile softening behavior of Ultra High Strength Steel Fiber-Reinforced Concrete (섬유혼입률이 초고강도 강섬유 보강 콘크리트의 인장연화거동에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Lee, Si-Young;Park, Gun;Hong, Sung-Wook;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.421-424
    • /
    • 2008
  • Ultra high strength steel fiber-reinforced concrete is characterized with high tensile strength and ductility. This paper revealed the influence of fiber volume fraction on the tensile softening behaviour of ultra high strength steel fiber-reinforced concrete and developed tensile softening model to predict the deformation capacity by finite element method analysis with experimental results. The initial stiffness of ultra high strength steel fiber-reinforced concrete was constant irrespective of fiber volume fraction. The increase of fiber volume fraction improved the flexural tensile strength and caused more brittle softening behaviour. Finite element method analysis proposed by Uchida et al. was introduced to obtain the tensile softening curve from three point notched beam test results and we proposed the tensile softening model as a function of fiber volume fraction and critical crack width.

  • PDF

The Moment-Curvature Relationship of the Rectangular Ultra High Performance Fiber Reinforced Concrete Beam (초고강도 섬유보강 직사각형 콘크리트보의 모멘트-곡률 관계)

  • Han, Sang-Mook;Guo, Qing-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • The flexural behavior of the UHPFRC rectangular beam which has 100 MPa, 140 MPa compressive strength were compared with that of the typical RPC rectangular beam which has same geometrical shape, prestressd force and 160 MPa compressive strength. UHPFRC beam was not reinforced at all and the variable of test is fraction of steel fiber, compressive strength of concrete, method of prestressing and ratio of prestressing bar. The behavior of UHPFRC beam was analysed by relationship of moment - curvature and load - deflection. Simple modeling of stress-strain of UHPFRC was proposed. Based on the proposed constituted, the flexural moment-curvature relationship was calculated and compared with experimental data on prestressed UHPFRC beams. Good agreement between calculated strengths and experimental data is obtained.

Nonlinear Finite Element Analysis of UHPFRC I-Beam on the Basis of an Elastic-Plastic Fracture Model (탄소성 파괴역학 모델에 근거한 초고강도 섬유보강 콘크리트 I 형보의 비선형 유한요소해석)

  • Han, Sang-Mook;Guo, Yi-Hong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.199-209
    • /
    • 2009
  • This paper deals with the three-dimensional finite element analysis of failure behavior of UHPFRC I-beam under monotonic load. Different from the constitutive law of normal and high strength concrete, an elastic-plastic fracture model that considers the tensile strain hardening is proposed to describe the material properties of UHPFRC. A multi-directional fixed crack criterion with tensile strain hardening is defined in the tensile region, and Drucker-Prager criterion with an associated flow rule is adopted in the compressive region. The influence of span, prestressing force and section on the behavior of UHPFRC I-beam are investigated. The comparison of the numerical results with the test results indicates a good agreement.

Compressive Behavior of Hybrid Steel Fiber Reinforced Ultra-High Performance Concrete (하이브리드 강섬유 보강 초고성능 콘크리트의 압축거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.213-221
    • /
    • 2016
  • Uniaxial compression tests for ultra-high performance hybrid steel fiber reinforced concrete (UHPC) were performed to evaluate the compressive behavior of UHPC. The UHPC for testing contains hybrid steel fibers with a predetermined ratio using a length of 19 mm and 16 mm straight typed steel fibers. Test parameter was determined as a fiber volume ratio to investigate the effect of fiber volume ratio on the strength and secant modulus of elasticity. Test results showed that the compressive strength and elastic modulus of UHPC increased with increasing the fiber volume ratio. Based on the test results, the compressive strength and modulus of elasticity equations were proposed as function of the compressive strength of unreinforced and fiber reinforced UHPC, respectively. The simplified equations for predicting the mechanical properties of the UHPC were a good agreement with the test data. The proposed equations are expected to be applied to the SFRC and UHPC with steel fibers.

Improved Transmission of UHSC Column Loads by Puddling of Fiber Reinforced UHSC (강섬유 보강 초고강도 콘크리트의 확대 타설을 통한 기둥 하중 전달 성능 향상)

  • Lee, Joo-Ha;Yang, Jun-Mo;Lee, Seung-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • This study reports on the structural characteristics of slab-column connections using fiber-reinforced ultra-high-strength concrete (UHSC). Compression tests were performed on two slab-column and four isolated column specimens. In the column load tests, slab loads were also applied on the slab-column specimens so that the actual confinement condition at the slab-column joint was considered. The main parameter investigated was the "puddling" of fiber-reinforced UHSC. This paper also investigates the effects of some parameters, such as confinement of slab concrete, steel fibers, and concrete strength of the joint, related to the ability of the slab-column specimens and isolated column specimens without the surrounding slab to transmit axial loads from the UHSC columns through slab-column connections. Furthermore, the ACI Code (2005) and the CSA Standard (2004) are compared to the experimental results. The beneficial effects of the puddling of fiber-reinforced UHSC on the transmission of column loads through slab-column connections are demonstrated.

Fiber Orientation Impacts on the Flexural Behavior of Steel Fiber Reinforced High Strength Concrete (섬유의 방향성이 강섬유 보강 초고강도 콘크리트의 휨거동 특성에 미치는 영향)

  • Kang, Su-Tae;Kim, Yun-Yong;Lee, Bang-Yun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.731-739
    • /
    • 2008
  • To evaluate the fiber orientation characteristics and estimate its effect on the flexural strength of steel fiber reinforced ultra high strength concrete with directions of concrete placing, we developed an image processing technique and carried out the flexural test to quantify the effect of fiber orientation characteristics on the flexural strength as well. The image processing technique developed in this study could evaluate quantitatively the fiber orientation property by the use of dispersion coefficient, the number of fibers in a unit area, and fiber orientation. It was also found that the fiber orientation characteristics were dependent on the direction of concrete placing. Fiber orientation characteristic was revealed to strongly affect the ultimate flexural strength, while hardly affecting the first cracking strength. Theoretical model for flexural strength was applied to compare with test results, which exhibited a good agreement.

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.