• Title/Summary/Keyword: 체적 함수비

Search Result 168, Processing Time 0.028 seconds

A Study for Unsaturated-Character of Weathered Granite Soil in Korea (국내 화강풍화토의 불포화 특성에 관한 연구)

  • Lee, Hyoungkyu;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.13-20
    • /
    • 2009
  • Generally, soil is regarded as fully saturated in Geotechnical Engineering and under ground structure design. Because it is in convenience and safety. But soils treated in field are almost in unsaturated state. Design in unsaturated state is difficult comparing with saturated soil. In unsaturated soil mechanics, parameters are usually not constant unlike saturated soil mechanics. Additionally lab or field tests in unsaturated soil mechanics are required more cost, time and theoretical difficulty. One of essential requisites for examination about unsaturated soil is Soil-Water Characteristic Curve (SWCC). It show the relation between soil suction and soil water content. Through many studies in and out of country, computation and testing methods for SWCC were introduced. But in this the country, most soil is granite soil that is widely spread in Korea. And the studies for granite soil's SWCC are not enough yet. In this paper, through studying for existing proposal methods about computation SWCC and collection data for domestic granite soils, It was determined the suitable method for domestic granite soils, and computed each granite soil's SWCC. The purpose of this paper is establishing database for domestic granite soil's SWCC as each region to convenience for applying to actual affairs. For this, studying about existing proposal methods for SWCC was performed and a computer program Soil-Vision is used. Furthermore for verification theoretical and testing methods were also performed.

  • PDF

Calculation of overtopping discharge with time-dependent aspects of an embankment failure (시간에 따른 제방붕괴 양상을 고려한 월류량 산정)

  • Kim, Hyung-Jun;Kim, Jong-Ho;Jang, Won-Jae;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, a time-dependent aspect of an embankment failure is considered to simulate a flood inundation map and calculate overtopping discharge induced by an embankment failure. A numerical model has been developed by solving the two dimensional nonlinear shallow water equations with a finite volume method on unstructured grids. To analyze a Riemann problem, the HLLC approximate Riemann solver and the Weighted Averaged Flux method are employed by using a TVD limiter and the source term treatment is also employed by using the operator splitting method. Firstly, the numerical model is applied to a dam break problem and a sloping seawall. Obtained numerical results show good agreements with experimental data. Secondly, the model is applied to a flow induced by an embankment failure by assuming that the width and elevation of embankment are varied with time-dependent functions. As a result of the comparison with each numerical overtopping discharge, established flood inundation discharges in the previous studies are overestimated than the result of the present numerical model.

Numerical simulation of submerged jump and washed-out jump using the k-𝜔 SST model (k-𝜔 SST 모형을 이용한 수중도수와 잠긴흐름의 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.1011-1019
    • /
    • 2021
  • This study presents numerical simulations of submerged jump and washed-out jump resulted from the flow over the embankment type weir. Unsteady Reynolds Averaged Navier-Stokes (URANS) equations are solved with the k-𝜔 SST turbulence model. Validations are carried out using the experimental results in the literature, revealing that computed roller shape, free surface, and mean velocity are in good agreement with measured data. The volume fractions of water of the submerged jump and washed-out jump are compared, and the characteristics of the two flows from the double-averaged volume fractions of water are presented. The condition under which the transition occurs from the submerged jump to washed-out jump is presented by the relation between the relative embankment length and submergence factor via numerical simulations by changing the weir length, discharge, and tailwater depth.

A Constitutive Model on the Behavior Under $K_0$ Condition for Cohesionless Soils and Optimization Method of Parameter Evaluation Based on Genetic Algorithm (사질토의 $K_0$ 조건하 거동에 대한 구성모델 및 유전자 알고리즘을 적용한 계수의 최적화 산정기법)

  • 오세붕;박현일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.37-48
    • /
    • 2004
  • This study is focused on the constitutive model in order to represent brittleness and dilatancy for cohesionless soils. The constitutive model was based on an anisotropic hardening rule derived from generalized isotropic hardening nile, which includes an appropriate hardening equation for the overall strain behavior at small to large strains. The yield surface is a simple cylinder type in stress space and it makes the model practically useful. Hence dilatancy behavior in cohesionless soils could be modeled reasonably. A peak stress ratio was defined in order to model brittle stress-strain relationships. An optimized design methodology was proposed on the basis of real-coded genetic algorithm in order to determine parameters for the proposed model systematically. The material parameters were then determined by that algorithm. In order to verify the proposed model, triaxial tests were performed under $K_0$ conditions far weathered soils. In comparison with the triaxial test results under $K_0$ conditions, the proposed model could calculate appropriately the actual effective stress behavior on brittle stress-strain relationships and dilatancy.

Experimental Study on the Hysteresis of Suction Stress in Unsaturated Sand (불포화 모래의 흡입응력 이력현상에 대한 실험적 연구)

  • Song, Young-Suk;Choi, Jin-Su;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.145-155
    • /
    • 2012
  • The matric suction and volumetric water content of Jumunin standard sand with a relative density of 60% were measured using an Automated Soil-Water Characteristic Curve (SWCC) apparatus during both drying and wetting processes. The test time for the drying process was longer than that for the wetting process, because the flow of water is likely to be protected by air trapped in voids within the soils during the drying process. Based on the matric suction and volumetric water content, the SWCC was estimated using the model proposed by van Genuchten (1980). For the drying process, the unsaturated fitting parameters ${\alpha}$, n, and m were 0.399, 8.586, and 0.884, respectively; for the wetting process, the values were 0.548, 5.625, and 8.220, respectively. The hysteresis phenomenon occurred in the SWCCs, which means the SWCC of the drying process is not matched with the SWCC of the wetting process. Using these unsaturated parameters, we estimated the Suction Stress Characteristic Curve (SSCC), based on the relationship between suction stress and the effective degree of saturation. The suction stress showed a rapid decrease when the matric suction exceeds the Air Entry Value (AEV). Therefore, the effective stress of unsaturated soils is different from that of saturated soils when the matric suction exceeds the AEV. The suction stress of the drying process exceeds that of the wetting process for a given effective degree of saturation. The hysteresis phenomenon was also recognized in SSCCs. The hysteresis phenomenon of SSCCs arises from that of SWCCs, which is induced by the ink bottle effect and the contact angle effect. In the case of a sandy slope, the suction stress is positive and acts to enhance the slope stability as the water infiltrates the ground, but is negative when the suction stress exceeds the AEV. The results obtained for the wetting process should be applied in analyses of slope stability, because the process of water infiltration into ground is similar to the wetting process.

Modelling of noise-added saturated steam table using the neural networks (신경회로망을 사용한 노이즈가 첨가된 포화증기표의 모델링)

  • Lee, Tae-Hwan;Park, Jin-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.205-208
    • /
    • 2008
  • In numerical analysis numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But most of the thermodynamic properties of the steam table are determined by experiment. Therefore they are supposed to have measurement errors. In order to make noised thermodynamic properties corresponding to errors, random numbers are generated, adjusted to appropriate magnitudes and added to original thermodynamic properties. the neural networks and quadratic spline interpolation method are introduced for function approximation of these modified thermodynamic properties in the saturated water based on pressure. It was proved that the neural networks give smaller percentage error compared with quadratic spline interpolation. From this fact it was confirmed that the neural networks trace the original values of thermodynamic properties better than the quadratic interpolation method.

  • PDF

Shape Optimization of Arches (아치구조의 형상 최적화)

  • Han, Sang Hoon;Byun, Keun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.127-135
    • /
    • 1984
  • This paper considers the problem of optimum shaping of steel arches subjected to general loading. The weight of arches is considered as the objective function and the appropriate combinations of section forces, material volume, arc length, and closed section area of arches are considered as the stress constraints. The shape optimization problems are formulated in terms of the design variables of sectional areas of each element. First the cost sensitivity of the design is investigated. Then the investigation comprises the search for the optimum arch form as well as the optimum area distribution along the arch. Two spaces of shape optimization algorithm will be treated, the first space corresponding to the section optimization by the Modified Newton Raphson Method, and the second space to the coordinate optimization by the Powell Method. The optimization algorithm is evaluated and the optimum span-rise ratios for the given arches are evaluated.

  • PDF

Shape Optimization of Truss Structures with Multiobjective Function by α -Cut Approach (α -절단법에 의한 다목적함수를 갖는 트러스 구조물의 형상최적화)

  • Yang, Chang Yong;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.457-465
    • /
    • 1997
  • The Shape optimization makes it possible to reduce the weight of structure and cost then member sizing optimization. A vast amount of imprecise information is existed in constraints of the optimum design. It is very difficult and sometimes confusing to describe and to deal with the several criteria which contain fuzzy degrees of relatives importance. This paper proposed weighting strategies in the multiobjective shape optimization of fuzzy structural system by ${\alpha}$-cut approach. The algorithm in this research is numerically tested for 2-bar truss structure. The result show that. the user can choose the one optimum solution in practices as obtaining the optimum solutions according to the ${\alpha}$-cut approach, weight of volume and displacement.

  • PDF

Constitutive Modeling for Resilient Behavior of Granular Materials under Repeated Loading (반복하중을 받는 입상재료의 회복탄성거동에 관한 구성모델)

  • Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.827-838
    • /
    • 1994
  • Numerous pavement response models rely on constitutive relationships to describe the response of granular materials. In this study, a nonlinear elastic constitutive model which is a function of bulk stress and octahedral shear stress is proposed to describe the resilient behavior of thick granular base courses under flexible airfield pavements. Special features of this model are its accuracy to predict the nonlinear resilient behavior, its simplicity to determine the material constants and its ability to model the secondary effect of decreasing the resilient modulus due to shear effects. In laboratory tests, the nonlinear resilient behavior of granular materials is investigated and values of resilient moduli are determined to provide data for verifying the proposed model. It is found that the resilient modulus is much more dependent on the states of stresses in terms of bulk stress and deviator stress than any other factors. Result of comparison shows that predicted values of resilient moduli are in good agreement with the measured values indicating that the proposed model is suitable to describe the nonlinear resilient behavior of the granular material with wide range of stress states which meet in airfield pavements.

  • PDF

Characterization of Physical Factor of Unsaturated Ground Deformation induced by Rainfall (강우를 고려한 불포화 지반변형의 영향인자 평가)

  • Kim, Man-Il;Jeon, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • Geophysical survey for establishing a wide site for the distribution of water content, wetting front infiltration due to the rainfall, and distribution of groundwater level has been performed by using 8round penetration radar (GPR) method, electrical resistivity method, and so on. On the other hand, a narrow area survey was performed to use a permittivity method such as time domain reflectometry, frequency domain reflectometry, and amplitude domain reflectometry methods for estimating volumetric water content, soil density, and concentration of contaminant in surface and subsurface. The permittivity methods establish more corrective physical parameters than different found survey technologies mentioned above. In this study for establishment of infiltration behaviors for wetting front in the unsaturated soil caused by an artificial rainfall, soil physical parameters for volumetric water content, pore water pressure, and pore air pressure were measured by FDR measurement device and pore water pressure meter which are installed in the unsaturated weathered granite soil with different depths. Consequently, the authors were proposed to a new establishment method for analyzing the variations of volumetric water content and wetting front infiltration from the responses of infiltrating pore water in the unsaturated soil.