• Title/Summary/Keyword: 체적변형률

Search Result 112, Processing Time 0.021 seconds

Effect of Residual Shear Strain on the Relationship between Volumetric Strain and Effective Stress after Liquefaction (액상화 후 잔류전단변형률이 체적변형률과 유효응력 관계에 미치는 영향)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.55-62
    • /
    • 2010
  • The settlements by liquefaction seldom occur uniformly because of soil homogeneity, however differential settlements are major cause of the damages to structures. From the past researches, author paid attention to the fact that stress history during undrained cyclic shear process affects greatly on the volumetric strains of the post-liquefaction. Therefore, the effect of the residual shear strain in cyclic shear process was examined in this study. The experiment apparatus based on strain control with volumetric strain control device was used for the study to investigate the effect of the residual strain on the relationship between volumetric strain and effective stress of clean and granite sandy soil. It could be seen an insignificant difference in the volumetric strain after liquefaction under various residual shear strain conditions in the case of clean sand. On the other hand, in granite sandy soil, the volumetric strain after liquefaction was small when the lower level of the residual shear strain was applied. And, the residual shear strain during cyclic shear affected the shape of the relation curve between effective stress and volumetric strain as well.

The Stress -Strain Behavior of Sand in Torsion Shear Tests (비틀림전단시험에 의한 모래의 응력 -변형률 거동)

  • 남정만;홍원표
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.65-82
    • /
    • 1993
  • A series of torsion shear tests were performed to study the drained stress -strain behavior of medium dense Santa Monica Beach sand under various stress paths. The torque was applied to both clockwise and counterclockwise directions at the end of hollow cylinder specimen. Two clip gages had been previously used to measure the changes in wall thickness and diameter of the specimen. In this study, however, the lateral strain was determined by measuring volume changes in specimen. Specimens were prepared by the air pluviation method and gaseous carbon deozide( CO2) was used to measure precisely volumetric strain in specimen. The drained stress -strain behavior of cohesionless Boils during rotation of principal stress directions was analysed based on the results of torsion shear tests. The coupling of mal stress were applied. It was also found from the test results that the atrial strain at failure decreased with increasing value.

  • PDF

A Prediction of the Behavior in Normally Consolidated Clay with Application of Isotropic Single Hardening Constitutive Model (등방단일경화구성모델에 의한 정규압밀점토의 거동 예측)

  • 홍원표;남정만
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.9-18
    • /
    • 1996
  • The results of a series of triaxial compression tests on remolded normally consolidated clay are compared with the predictions .by the isotropic single -hardening constitutive model, which incorporates eleven parameters. The parameters can be determined from undrained triaxial compression tests on isotropically consolidated specimens of remolded clay. The model with the determined parameters is applied to predict the stress-strain and pore pressure behaviors for untrained triaxial compresion tests on anisotropically consolidated specimens. Also the model is utilized to predict the stress strain and voltmetric strain behavior for drained triaxial compression tests on both isotropic and anisotropic specimens. The predicted response agrees well with the measured behavior for undrained triaxial compression tests on not only isotropically but also anisotroically but also anisotropically consolidated specimens. The initial volumetric strain is, however, predicted to be less than the measured value from drained triaxial compression tests, while the predicted volumetric strain close to failure is greater than the measured value. Nevertheless, it may be stated generally that overall acceptable predictions are produced. Therefore, the results of this study indicate that the applicability of the model on prediction of the behavior of normally consolidated clay is achieved sufficiently.

  • PDF

A Constitutive Model on the Behavior Under $K_0$ Condition for Cohesionless Soils and Optimization Method of Parameter Evaluation Based on Genetic Algorithm (사질토의 $K_0$ 조건하 거동에 대한 구성모델 및 유전자 알고리즘을 적용한 계수의 최적화 산정기법)

  • 오세붕;박현일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.37-48
    • /
    • 2004
  • This study is focused on the constitutive model in order to represent brittleness and dilatancy for cohesionless soils. The constitutive model was based on an anisotropic hardening rule derived from generalized isotropic hardening nile, which includes an appropriate hardening equation for the overall strain behavior at small to large strains. The yield surface is a simple cylinder type in stress space and it makes the model practically useful. Hence dilatancy behavior in cohesionless soils could be modeled reasonably. A peak stress ratio was defined in order to model brittle stress-strain relationships. An optimized design methodology was proposed on the basis of real-coded genetic algorithm in order to determine parameters for the proposed model systematically. The material parameters were then determined by that algorithm. In order to verify the proposed model, triaxial tests were performed under $K_0$ conditions far weathered soils. In comparison with the triaxial test results under $K_0$ conditions, the proposed model could calculate appropriately the actual effective stress behavior on brittle stress-strain relationships and dilatancy.

A Study on the Elastoplastic Behavior and Yield Surface of Polymer Nanocomposites by Molecular Dynamics Simulations (분자동역학 전산모사를 이용한 나노입자 복합재의 탄소성 거동과 항복 예측에 관한 연구)

  • Yang, Seung-Hwa;Yu, Su-Young;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.558-561
    • /
    • 2010
  • 본 연구에서는 나노복합재의 탄소성 거동과 항복응력을 예측하기 위해 분자동역학 전산모사를 수행하였다. 나일론 기지와 실리카 나노입자가 포함된 단위 셀 구조로부터 나노입자의 체적분율 변화에 따른 응력-변형률 선도를 등변형률을 적용한 등온등압 앙상블 전산모사로부터 도출하였다. 4%의 변형률 범위에서 나노복합재의 탄성계수를 도출하였고, 이를 이용하여 2% 오프셋 방법으로 항복응력을 예측하였다. 나노입자의 유무에 따른 항복평면의 변화와 고분자 재료에서 나타나는 정수압 효과가 항복평면에 미치는 영향을 확인하기 위해 일축 인장/압축 그리고 이축 인장/압축을 수행하였고, 각각의 경우에 나타나는 나노복합재 내부의 자유체적 변화에 대한 분석을 통해 나노입자의 강화효과를 고찰하였다. 또한 고분자 기지로 인해 발생하는 정수압 효과를 반영한 von-Miss 항복평면을 도출하고, 입자의 체적분율 변화에 따른 항복응력의 예측이 가능하도록 정수압효과에 대한 파라메터를 체적분율의 함수로 근사하였다.

  • PDF

An Analysis of Poisson's Ratio Behaviors by Uniaxial Compressive Loading-reloading Test - On the Sedimentary Rocks of Kyungsang Basin - (일축압축 하에서 반복재하에 따른 포아송비의 거동분석 - 경상분지 퇴적암을 대상으로 -)

  • Lee, Jong-Suok;Moon, Jong-Kyu;Choi, Woong-Eui
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.66-77
    • /
    • 2013
  • This paper deals with Poisson's ratio and volumetric strain behavior on loading-reloading terms under uniaxial condition targeting 404 individual rocks, which include sedimentary rocks as sandstone, shale, mudstone, conglomerate and tuff on Kyungsang basin. Poisson' ratio demonstrates increase, convergence and decrease behavior according to the increase in load, which results in preponderance of increase behavior. Volumetric strain demonstrates normal, positive and negative behavior according to the increase in load, which results in preponderance of normal behavior. On practice, Poisson's ratio can be indicative of high or low values with low values of design load. Consequently, a careful selection of results in in-situ sample experiment should be made and varying design conditions should be considered.

A Constitutive Model for Normally Consolidated Clays (정규압밀점토의 응력 -변형률 구성 방정식)

  • 이영휘
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.71-80
    • /
    • 1992
  • A new constitutive model is proposed for normally consolidated clays. A main skeleton of the proposed model is based on the concepts of the incremental stress-strain theory by Roscoe and Poorooshasb. The equation of the undrained stress path is formulated by introducing the new pore pressure parameter(C), which is the slope of the linear line in the plot of the normalized pore pressure against the stress ratio. Once the stress increment along the constant stress ratio path (followed by untrained stress path) is know, the volumetric strains are calculated from the linear characteristics between void ratio and logarithm of the mean normal stress for any stress ratio. Then the incremental shear strains are successfully predicted by applying the flow rule derived in the modified theory by Roscoe and Burland.

  • PDF

Modeling of Size-Dependent Strengthening in Particle-Reinforced Aluminum Composites with Strain Gradient Plasticity (변형률 구배 소성을 고려한 입자 강화 알루미늄 복합재의 크기 종속 강화 모델링)

  • Suh, Yeong-Sung;Park, Moon-Shik;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.745-751
    • /
    • 2011
  • This study proposes finite element modeling of dislocation punching at cooling after consolidation in order to calculate the strength of particle-reinforced aluminum composites. The Taylor dislocation model combined with strain gradient plasticity around the reinforced particle is adopted to take into account the size-dependency of different volume fractions of the particle. The strain gradients were obtained from the equivalent plastic strain calculated during the cooling of the spherical unit cell, when the dislocation punching due to CTE (Coefficient of Thermal Expansion) mismatch is activated. The enhanced yield stress was observed by including the strain gradients, in an average sense, over the punched zone. The tensile strength of the SiCp/Al 356-T6 composite was predicted through the finite element analysis of an axisymmetric unit cell for various sizes and volume fractions of the particle. The predicted strengths were found to be in good agreement with the experimental data. Further, the particle-size dependency was clearly established.

The Behavior of Silt due to Volume Deformation Tendency (체적변형 경향에 따른 실트의 거동)

  • Jeong, Sang Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.255-260
    • /
    • 1993
  • The behavior of pure silt was investigated by using an automated triaxial testing device. The stress-strain behavior of silt due to the volume deformation tendency was compared with the behavior of clay prior to failure and behavior at failure under monotonic undrained compression and extension conditions. A pure silica flour was chosen to form samples. The isotropically normally-consolidated samples with 450 kPa of effective mean confining pressure and overconsolidated samples through unloading were tested. Based on the experimental results, it was qualitatively identified that the undrained strength of normally-consolidated silt increases due to its dilatant nature which is not seen in clay. Also the overconsolidated silt shows a significantly different behavior under the monotonic loadings due to the volume deformation tendency.

  • PDF

Analysis for the Crack Characteristics of Rock and Concrete using Strain and Elastic Wave (변형률과 탄성파를 이용한 암석 및 콘크리트 균열특성분석)

  • Choi, Young Chul;Kim, Jin Seop;Park, Tae Jin;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.253-262
    • /
    • 2017
  • The purpose of this paper is to analyze the crack characteristics by performing the compression test of the rock and concrete specimens. The experiments are carried out by using strain sensors which can measure length change and the AE sensor which can detect the elastic wave from the crack. The crack volumetric strain calculated from measured strain is shown in different shape on the rock and the concrete specimens. This is because the specimens have a different degree of brittleness. However, the crack volumetric strain associated with the fracture and damage was similar to accumulated AE energy of the two specimens. This means that the AE sensor can assess damage in real time without damaging the structure.