DOI QR코드

DOI QR Code

An Analysis of Poisson's Ratio Behaviors by Uniaxial Compressive Loading-reloading Test - On the Sedimentary Rocks of Kyungsang Basin -

일축압축 하에서 반복재하에 따른 포아송비의 거동분석 - 경상분지 퇴적암을 대상으로 -

  • 이종석 (울산대학교 공과대학 건설환경공학부) ;
  • 문종규 (동명기술공단(주), 울산대학교 건설환경공학부) ;
  • 최웅의 (현대중공업(주), 해양사업본부 설계부)
  • Received : 2013.01.10
  • Accepted : 2013.02.04
  • Published : 2013.02.28

Abstract

This paper deals with Poisson's ratio and volumetric strain behavior on loading-reloading terms under uniaxial condition targeting 404 individual rocks, which include sedimentary rocks as sandstone, shale, mudstone, conglomerate and tuff on Kyungsang basin. Poisson' ratio demonstrates increase, convergence and decrease behavior according to the increase in load, which results in preponderance of increase behavior. Volumetric strain demonstrates normal, positive and negative behavior according to the increase in load, which results in preponderance of normal behavior. On practice, Poisson's ratio can be indicative of high or low values with low values of design load. Consequently, a careful selection of results in in-situ sample experiment should be made and varying design conditions should be considered.

경상분지 퇴적암, 사암, 셰일, 이암, 역암 및 응회암 시료 404개를 대상으로 재하-재재하 가압조건으로 포아송비와 체적 변형률 거동을 분석하였다. 하중증가에 따라 포아송비는 증가, 수렴 및 감소거동을 나타내며 증가거동이 월등히 우세하였다. 체적 변형률 거동은 하중 증가에 따라 정상거동, 양의거동 및 음의거동을 나타내고 있으며 정상거동 양상이 매우 우세하였다. 실무에서 사용하중은 매우 낮은데 이 범위에서 포아송비는 매우 높거나 혹은 낮은 값을 표출하는 바, 이의 적용은 현장시료의 실험을 통한 결과값 선택에서 설계조건을 고려하여 선택해야 할 것이다.

Keywords

References

  1. Afrouz, A. (1991), "Determination of rock mass modulus nonlinear variation with loading and depth", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 28, No. 2-3, pp. 179-183 https://doi.org/10.1016/0148-9062(91)90072-T
  2. ASTM D 70012-07e1, "Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures", Annual Book of ASTM Standards, 2009.
  3. ASTM D 2938-95, "Standard test method for unconfined compressive strength of intact rock core specimens", Annual Book of ASTM Standards, 2005.
  4. ASTM D 3148-96, "Test method for elastic moduli of intact rock core specimens in uniaxial compression", Annual Book of ASTM Standards, 2005.
  5. ASTM D 4543-01, "Practices for preparing rock core specimens and determining dimensional and shape tolerances", Annual Book of ASTM Standards, 2005.
  6. Bieniawski Z.T. (1967), "Mechanism of Brittle Fracture of Rock, Part 2-Experimental, Studies", Int. J. of Rock Mech. and Min. Sci., Vol. 4
  7. Gercek H. (2007), "Poisson's ratio value for rocks", Int. J. of Rock Mech. and Min. Sci., Vol. 44, pp. 1-13. https://doi.org/10.1016/j.ijrmms.2006.04.011
  8. Gill D.E., Corthesy R. & M.H. Leite (2005), Determining the minimal number of specimens for laboratory testing of rock properties, Eng. Geol., Vol. 78, pp. 29-51. https://doi.org/10.1016/j.enggeo.2004.10.005
  9. Hiltscher R., Carlsson A. and Olsson T. (1984), "Determination of the deformation properties of bedrock under turbine foundations", Rock Mech. and Rock Eng., Vol. 17, No. 1, pp. 37-49. https://doi.org/10.1007/BF01088369
  10. ISRM (1979), "Suggested methods for determining the uniaxial compressive strength and deformability of rock materials", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 16(2), pp. 135-140.
  11. ISRM (1981), Part 1, "Suggested method for determination of the uniaxial compressive strength of rock materials".
  12. ISRM (1999), Draft "ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression", Int. J. of Rock Mech. and Min. Sci., Vol. 36, No. 3, pp. 279-289. https://doi.org/10.1016/S0148-9062(99)00006-6
  13. Kim, J.Y. (1985), "Statistics", Kyung-Mun Sa ed.
  14. Kim, U.C., Kim, J.J., Park, B.W., Park, S.H., Song, M.S., Lee, Y.J., Juon, J.W. and Cho, S.S. (2005), "Modern Statistics", Col. of Nature, SNU, Young-Ji sa ed.
  15. Kwon S. and Wilson J.W. (1999), "Deformation Mechanism of the Underground Excavations at the WIPP Site", Rock Mech. and Rock Eng., Vol. 32, No. 2, pp. 101-122 https://doi.org/10.1007/s006030050027
  16. Lau J.S.O. and Chandler N.A. (2004), "Innovative laboratory testing", Int. J. Rock Mech. Min. Sci., Vol. 41, pp. 1427-1445. https://doi.org/10.1016/j.ijrmms.2004.09.008
  17. Lee, J.S., Moon, J.K. & Choi, W.E. (2012), "An analysis of elastic moduli behyaviors of uniaxial compression under loading-reloading test(1)", J. of the Korean Geotechnical Society, Vol. 28, No. 8, pp. 65-78.
  18. Min K.B. and Jing L. (2004), "Stress dependent mechanical properties and bounds of Poisson's ratio for fractured rock masses investigated by a DFN-DEM technique", Sinorock 2004 Symposium, Int. J. Rock Mech. & Min. Sci., Vol. 41, No. 3, CD-Rom.
  19. Ofoegbu G.I. and Curran J.H. (1992), "Deformability of intact rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 29, No. 1, pp. 35-48. https://doi.org/10.1016/0148-9062(92)91043-5
  20. Poisson S.D. (1781-1840), "Memoire sur l'equilibre et le mouvement des corps elastiques, Mem de l'Cad, Paris, 1829, pp.
  21. Yamaguchi U. (1970), "The number of test-pieces required to determine the strength of rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 7, No. 2, pp. 209-227. https://doi.org/10.1016/0148-9062(70)90013-6
  22. Wikipedia (2011), http://en.wikipedia.org/wiki/Poisson%27s-ratio.

Cited by

  1. Experimental Tests of Composite Material Used for Compression Joints in Thermal Bridge Breaker Systems vol.6, pp.3, 2014, https://doi.org/10.7763/IJET.2014.V6.694