• Title/Summary/Keyword: 첨단안전차량

Search Result 97, Processing Time 0.026 seconds

Development of Algorithm for Advanced Driver Assist based on In-Wheel Hybrid Driveline (인휠 전기 구동 기반의 능동안전지원 알고리즘 개발)

  • Hwang, Yun-Hyoung;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.1-8
    • /
    • 2017
  • This paper presents the development of an adaptive cruise control (ACC) system, which is one of the typical advanced driver assist systems, for 4-wheel drive hybrid in-wheel electric vehicles. The front wheels of the vehicle are driven by a combustion engine, while its rear wheels are driven by in-wheel motors. This paper proposes an adaptive cruise control system which takes advantage of the unique driveline configuration presented herein, while the proposed power distribution algorithm guarantees its tracking performance and fuel efficiency at the same time. With the proposed algorithm, the vehicle is driven only by the engine in normal situations, while the in-wheel motors are used to distribute the power to the rear wheels if the tracking performance decreases. This paper also presents the modeling of the in-wheel motors, hybrid in-wheel driveline, and integrated ACC control system based on a commercial high-precision vehicle dynamics model. The simulation results obtained with the model are presented to confirm the performance of the proposed algorithm.

Analysis of Technology Trends in the Smart Cars and the IoV (스마트차량과 자동차 사물인터넷(IoV) 기술동향 분석)

  • Han, T.M.;Cho, S.I.;Chun, H.W.;Huh, J.D.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.5
    • /
    • pp.11-21
    • /
    • 2015
  • 최근 IT기술과 산업 간 융합이 활발한 가운데 자동차에도 각종 첨단 IT기술이 접목되면서 운전자의 안전과 편의성이 향상된 스마트카(smart car)가 속속 개발되고 있다. 가까운 미래에 스마트카의 도움으로 운전자가 전방주시 의무에서 자유롭게 될 수 있게 되면, 운행 중에 언제 어디서나 모바일 인터넷을 통한 정보접근이 가능하도록 지원하는 컴퓨팅 환경인 자동차 사물인터넷(Internet of Vehicles, Automotive IoT)이 중요하게 대두될 것으로 전망된다. 자동차 사물인터넷의 개념이 아직은 명확히 잡혀있지 않지만, 대체로 모바일 연결성(mobile connectivity)을 중심으로, 교통안전 혼잡해소뿐만 아니라 다양한 사용자 맞춤형 서비스 산업을 창출할 수 있는 컴퓨팅 환경을 의미한다. 즉, 운전자와 자동차, 자동차와 주변환경 및 교통인프라, 그리고 일상생활의 모든 요소가 자동차를 매개로 해서 유기적으로 연결되는 컴퓨팅 환경을 의미하며, 가까운 미래에 이런 컴퓨팅 환경을 지원하는 자동차가 상용화될 것으로 전망된다. 본고에서는 이러한 전망을 반영하여 자동차 사물인터넷 환경의 스마트카에 적용될 주요 기술과 서비스를 분석하고, 스마트카와 자율주행의 핵심기술인 인포테인먼트 플랫폼의 주요 동항 및 이슈를 살펴보고자 한다.

  • PDF

Study for Evaluation Standard of Longitudinal Active Safety System (종방향 능동안전장치의 평가기준 연구)

  • Jang, Hyunik;Yong, Boojoong;Cho, Seongwoo;Choi, Inseong;Min, Kyongchan;Kim, Gyuhyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2012
  • ADAS(Advanced Driver Assistance System) which is developed for alleviating driver's load has become improved with extending it's role. Previously, ADAS offered simple function just to make driver's convenience. However, nowadays ADAS also acts as Active Safety system which is made to release and/or prevent accidents. Longitudinal control system, as one of major parts of Active Safety System, is assessed as doing direct effect on avoiding accidents. Therefore, many countries such as Europe and America has pushed longitudinal control system as a government-wide project. In this paper, it covers the result of evaluation system and vehicle evaluation for development study in FCW, ACC and AEB.

The Analysis of Bus Traffic Accident to Support Safe Driving for Bus Drivers (버스운전자 안전운행지원을 위한 교통사고 분석 연구)

  • BHIN, Miyoung;SON, Seulki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.14-26
    • /
    • 2019
  • For bus drivers' safe driving, a policy that analyzes the causes of the drivers' traffic accidents and then assists their safe driving is required. Therefore, the Ministry of Land, Infrastructure and Transport set up its plan to gradually expand the equipping of commercial vehicles with FCWS (Forward Collision Warning System) and LDWS(Lane Departure Warning System), from the driver-supporting ADAS(Advanced Driver Assistance Systems). However, there is not much basic research on the analysis of bus drivers' traffic accidents in Korea. As such, the time is appropriate to research what is the most necessary ADAS for bus drivers going forward to prevent bus accidents. The purpose of this research is to analyze how serious the accidents were in the different bus routes and whether the accidents were repetitive, and to give recommendations on how to support ADAS for buses, as an improvement. A model of ordered logit was used to analyze how serious the accidents were and as a result, vehicle to pedestrian accidents which directly affected individuals were statistically significant in all of the models, and violations of regulations, such as speeding, traffic signal violation and violation of safeguards for passengers, were indicated in common in several models. Therefore, the pedestrian-sensor system and automatic emergency control device for pedestrian should be installed to reduce bus accidents directly affecting persons in the future, and education for drivers and ADAS are to be offered to reduce the violations of regulations.

Evaluation of Technical Feasibility for Vehicle Classification Using Inductive Loop Detectors on Freeways (고속도로 루프검지기를 이용한 차종분류 기법 평가)

  • Park, Joon-Hyeong;Kim, Tae-Jin;Oh, Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.9-21
    • /
    • 2009
  • This study presents a useful heuristic algorithm to classify vehicle classes using vehicle length information, which is extracted from inductive loop vehicle signatures. A high-speed scanning equipment was used to extract more detailed change of inductance magnitude for individual vehicles. Vehicle detection time and individual vehicle speeds were used to derive vehicle length information that is an input of the proposed algorithm. The spatial and temporal transferability tests were further conducted to evaluate algorithm. The spatial and temporal transferability tests were further conducted to evaluate algorithm performance more systematically. It is expected that the proposed method would be useful for obtaining vehicle classification information from wide-spread existing loop infrastructure.

  • PDF

Realization of Logistics Safety Management System By Operating Advanced Vehicle Safety Management Device (첨단 차량 안전관리장치 운영을 통한 물류 안전관리시스템 구현)

  • Moon, Hoi-Kwon;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • This study aims to provide a real-time information to the driver by effectively operating the advanced safety device attached to the freight vehicle, thereby minimizing insecure behavior of the driver such as speeding, rapid acceleration, sudden braking, And improve driving habits to prevent accidents and save energy. Advanced safety equipment is a device that warns the driver that the vehicle leaves the driving lane regardless of the intention of the driver and reduces the risk of traffic accidents by mitigating or avoiding collision by detecting a frontal collision during driving.The main contents of this report are as follows: In case of installing a warning device on a lane departing vehicle (excluding a light vehicle) and a lorry or special vehicle with a total weight exceeding 3.5 tonnes, the driver must continue to operate unless the driver releases the function.In addition, when the automatic emergency braking system is installed, the structure should be such that the braking device is operated automatically after warning the driver when the risk of collision with the running or stopped vehicle in the same direction is detected in front of the driving lane.

Comparison of simulation and Actual Test for ACC Function on Real-Road (실도로에서의 ACC 기능에 대한 시뮬레이션과 실차시험 비교 평가)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.457-467
    • /
    • 2020
  • Increasing environmental concerns have prompted countries around the world to tighten regulations on greenhouse gases and fuel efficiency. Research is being done using advanced driver assistance systems to improve fuel economy and for the convenience of drivers. Research on systems such as adaptive cruise control (ACC), LKAS, and AEB is active. The purpose of ACC is to control the longitudinal speed and distance of the vehicle and minimize the driver's load, which is considered useful for accident prevention. From this point of view, research has used a mathematical method of safety evaluation as a function of distances and scenarios while considering domestic road environments. A vehicle is tested with a simulation in a proposed scenario. The purpose of the analysis is to verify the functional safety of ACC by comparing the theoretical calculations using theoretical equations, the relative distances in the simulation, and an actual vehicle test. These methods are expected to enable many companies to use scenarios, formulas, and simulations as safety verification methods in the development of ACC.

A Study on Safety Evaluation Method of LKAS in Actual Road (LKAS의 실도로 안전성 평가방법에 관한 연구)

  • Yoon, PilHwan;Lee, SeonBong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.33-39
    • /
    • 2018
  • Recently, the automobile industry has developed ADAS (Advanced Driver Assistance System) to prevent traffic accidents and reduce driver's driving burden. Among the ADAS, the LKAS (Lane Keeping Assistance System) is a support system for the convenience and safety of the driver, and the main function is to maintain the driving lane of the vehicle. LKAS is a system that uses radar sensor and camera sensor to collect information about the position of the vehicle in the lane and to support keeping the lane through control if necessary. In many countries, LKAS has already been commercialized and the convenience and safety of drivers have been improved. The international LKAS evaluation test procedure is being developed and discussed by standardization committees such as the ISO (International Organization for Standardization) and the Euro NCAP (New Car Assessment Program). In Korean, the LKAS test method is specified in the KNCAP (Korean New Car Assessment Program), but the evaluation method is not defined. Therefore, the LKAS test procedure that meets international standards and is suitable for domestic road environment is necessary. In this paper, development of LKAS test evaluation scenarios that meets international standards and considering domestic road environment, and the formula that can evaluate the result value after control as the relative distance of lane and the front wheel are suggested. And a comparative analysis was conducted to verify the validity of the suggested scenario and formula. The test evaluation was conducted using the vehicle equipped with the LKAS.

Implementation of Preceding Vehicle Break-Lamp Detection System using Selective Attention Model and YOLO (선택적 주의집중 모델과 YOLO를 이용한 선행 차량 정지등 검출 시스템 구현)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.85-90
    • /
    • 2021
  • A ADAS(Advanced Driver Assistance System) for the safe driving is an important area in autonumous car. Specially, a ADAS software using an image sensors attached in previous car is low in building cost, and utilizes for various purpose. A algorithm for detecting the break-lamp from the tail-lamp of preceding vehicle is proposed in this paper. This method can perceive the driving condition of preceding vehicle. Proposed method uses the YOLO techinicque that has a excellent performance in object tracing from real scene, and extracts the intensity variable region of break-lamp from HSV image of detected vehicle ROI(Region Of Interest). After detecting the candidate region of break-lamp, each isolated region is labeled. The break-lamp region is detected finally by using the proposed selective-attention model that percieves the shape-similarity of labeled candidate region. In order to evaluate the performance of the preceding vehicle break-lamp detection system implemented in this paper, we applied our system to the various driving images. As a results, implemented system showed successful results.

A Study on Evaluation Method of the LKAS Test in Domestic Road Environment (국내도로환경을 고려한 LKAS 시험평가 방법에 관한 연구)

  • Yoon, Pil-Hwan;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.628-637
    • /
    • 2017
  • The automobile industry has developed Advanced Driver Assistance Systems (ADASs) to prevent traffic accidents and reduce the burden for drivers. One example is the Lane Keeping Assistance System (LKAS), which was developed for automotive vehicle systems for safety and better driving. The main system of the LKAS supports the driver while maintaining the vehicle within a lane. LKAS uses a radar sensor and camera sensor to collect information about the vehicle's position in the lane and send commands to the actuator to influence the lateral movement of the vehicle if necessary. Recently, vehicles equipped with LKAS have become commercially available. Test procedures for international LKAS evaluation are being discussed and developed by international committees, such as the International Organization for Standardization and United Nations Economic Commission for Europe. In Korea, an evaluation of LKASs for car safety is being planned by the Korean New Car Assessment Program. Therefore, test procedures should be developed for LKASs that are suitable for the domestic road environment while accommodating international standards. We developed a test scenario for LKASs and propose a formula for obtaining the target relative distance. To validate the methods, a series of experiments were conducted using commercially available vehicles equipped with LKAS.