• Title/Summary/Keyword: 철도진동

Search Result 811, Processing Time 0.025 seconds

A study on the characteristics of Micro Pressure wave for the optimum cross-section design in Honam high speed railway (호남고속철도 터널 단면선정을 위한 미기압파 특성 분석에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.51-68
    • /
    • 2008
  • When the train enters into a tunnel a high speed, pressure waves are generated inside the tunnel. The pressure waves at propagate in a form of compression wave toward the tunnel exit and a fraction of the compression waves that arrives at the exit of the tunnel are discharged to outside of the tunnel and the remainder is reflected into the tunnel as expansion waves. The compression waves emitted from the tunnel does not radiate in a specific direction but in all directions. If the amplitude of the compression wave is great, it causes noise and vibration, and it is called "Micro-Pressure Wave." "Micro-Pressure Wave" must be considered as a decision for the optimum tunnel cross-section as the amplitude of the compression wave depends on train speed, tunnel length, area of tunnel and train. Therefore, this paper introduces the case study of Micro-Pressure Wave characteristics for determination of tunnel cross section in Honam high speed railway, the pressure inside the tunnel and the micro-pressure waves at tunnel exit were measured at Hwashin 5 tunnel in Kyungbu HSR line. At the same time. a test of train operation model was performed and then the measurement results and test results were compared to verify that the various parameters used as input conditions for the numerical simulations, which were appropriate. Also a model test was performed, in order to analysis of the Micro-Pressure Wave Mitigation Performance by Type of Hood at Entrance Portal.

  • PDF

Vehicle-Bridge Interaction Analysis of Railway Bridges by Using Conventional Trains (기존선 철도차량을 이용한 철도교의 상호작용해석)

  • Cho, Eun Sang;Kim, Hee Ju;Hwang, Won Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.31-43
    • /
    • 2009
  • In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations of motion. The coupled equations of motion for the vehicle-bridge interaction are solved by the Newmark ${\beta}$ of a direct integration method, and by composing the effective stiffness matrix and the effective force vector according to a analysis step, those can be solved with the same manner of the solving procedure of equilibrium equations in static analysis. Also, the effective stiffness matrix is reconstructed by the Skyline method for increasing the analysis effectiveness. The Cholesky's matrix decomposition scheme is applied to the analysis procedure for minimizing the numerical errors that can be generated in directly calculating the inverse matrix. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 16 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by the PSD functions of the Federal Railroad Administration (FRA). The results of the vehicle-bridge interaction analysis are verified by the experimental results for the railway plate girder bridges of a span length with 12 m, 18 m, and the experimental and analytical data are applied to the low pass filtering scheme, and the basis frequency of the filtering is a 2 times of the 1st fundamental frequency of a bridge bending.

A study on the Dynamic Behavior Enhancement of the Korean High-speed Train (고속열차의 주행동특성 개선에 관한 연구)

  • Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.81-87
    • /
    • 2017
  • This paper describes the dynamic behavior and enhancement of Korean high-speed trains. The tail vibration reduction method of the yaw damper installation method change, which was derived from previous research, was applied to the running test of high-speed train. In addition, the vibration reduction method for the entire vehicle was derived by a numerical method and its effect was confirmed by a running test. The improved design was applied to the double-deck high-speed train coaches and the commissioning proceeded without problems in dynamic behavior. Sensitivity analysis of the suspension parameters affecting the critical speed of Korean next-generation high-speed trains was performed and four design variables that greatly affected the critical speed were derived. These were in the order of the primary elastic joint x-directional stiffness, the secondary yaw damper series stiffness, the secondary lateral damper damping coefficient, and the carbody damper damping coefficient. By optimizing the design variables, the suspension parameter that improves the critical speed by 23.3% can be used in the commercial designs of Korean next-generation high-speed trains.

Analysis of Dynamic Behavior of Floating Slab Track Using a Nonlinear Viscoelastic Spring Model (비선형 점탄성 스프링 모델을 이용한 플로팅 슬래브 궤도의 동적 거동 해석)

  • Jang, Seung Yup;Park, Jin Chul;Hwang, Sung Ho;Kim, Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1078-1088
    • /
    • 2012
  • Recently, the vibration and structure-borne noise induced by passing trains are of great concerns, and the floating slab track is highlighted as one of most efficient alternatives to reduce the railway vibration. However, due to the non-linearity and viscosity of rubber spring used in the floating slab track, its dynamic behavior is very complex. In this study, therefore, to simulate the dynamic behavior of floating slab track with a better accuracy, a nonlinear viscoelastic rubber spring model that can be incorporated in commercial finite element analysis codes has been proposed. This model is composed of a combination of elastic spring element, friction element and viscous element, and termed the "generalized friction viscoelastic model(GFVM)". Also, in this study, the method to determine the model parameters of GFVM based on Berg's 5-parameter model was presented. The results of the finite element analysis with this rubber spring model exhibit very good correlation with the test results of a laboratory mock-up test, and the feasibility of GFVM has been verified.

A Study on the Dynamic Characteristics on the Test Line for Korean High Speed Train (한국형 고속전철의 주행진동 특성에 관한 연구)

  • 김영국;김석원;박찬경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.555-560
    • /
    • 2003
  • Korean High Speed Train(KHST) has been tested on the high speed test line in Osung site of Korea High Speed Rail Construction Authority (KHRC). since it was developed as G7 Project Plan In 2002. This paper introduces the dynamic test devices in KHST and shows the comparison between the results of test and theoretical computing results which derive from the new model for KHST dynamic behavior. Previous computer simulation model for KHST was developed to review wether the vehicle system was satisfied with the dynamic performance requirements during the design procedure. But It should be applied the results of the parts test for suspension elements in order to compare between the results of computation and real test. Using VAMPIRE Program made by AEA Technology in UK. the new model also was modified. This paper shows that the static wheel loads calculated from new model is similar to test results. For test on high speed line, we prepared the test devices for evaluating the dynamic performances. which was consisted of the accelerometers( based on Kisler Co.) and the data aquisition systems (based on National instrument Co.), and test program coded by LabView 6i program. These lest devices and programs are flexible to extension the channels for adding sensors and connect to the ethernet network. The acceleration of car bodies, bogie frames and axle boxes were compared between the results of computation and test at 150km/. This paper shows that the results of test were high in high frequency band range but similar frequency band range. It might be considered that these differences were caused by the test which did not performed at constant speed for comparison analysis. Also. It will be able to understand the differences and make better results through a lot of tests planed in future.

  • PDF

Safety Evaluation Method for Ground Ammunition and Explosive Storage Facilities due to Underground Tunnel Blast (지하시설 굴착공사에 따른 탄약저장시설 안전성 평가방법 연구)

  • Park, Sangwoo;Kim, Kuk-Joo;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.331-339
    • /
    • 2019
  • Recently, expansion of urban and social infrastructures is planned to go through the transfer of military facilities or crossing the infrastructures via underground tunnels. However, when crossing facilities such as ammunition and explosive storages, a high level of safety assessment is required to prevent an accidental explosion of ground ammunition. In this study, a case study was conducted to evaluate the effect of blasting for the construction of tunnel on the ground ammunition facilities. The design section of Sinansan train operated by the Korea Railroad Authority with agreement of the Ministry of National Defense was selected. For the purpose of this study, the vibration velocity due to explosion was predicted by using GTS-NX, a numerical analysis program. Through literature review, it was confirmed that the vibration velocity of 0.2cm/sec can be a safety evaluation standard. These safety evaluation indicators and procedures used in this study can be utilized as an index of safety evaluation in the planning of social infrastructures that cross the ammunition facilities in the future.

A Study on Evaluation Method of Cable Tension for Railway Steel Composite Bridge (강철도 복합교량 케이블의 장력 평가기법에 관한 연구)

  • Choi, Jung-Youl;Lee, Soo-Jae;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.407-413
    • /
    • 2022
  • In this study, the empirical formula for evaluating cable tension based on long-term measurement for about 3 years according to temperature change was proposed by proving the correlation between the expansion joint displacement of the upper road bridge and the cable tension of the lower railway bridge. The tension prediction results using the empirical formula for tension evaluation each cables proposed in this study were found to be in good agreement with the cable tension using the vibration method within 3%. Therefore, it was analyzed that it could be applied together with the vibration method that was an experimental technique, to predict and evaluate the cable tension in serviced railway steel composite bridge. As a result of applying the estimated temperature calculated by the empirical formula for expansion proposed in this study to the empirical formula, it was analyzed that a high level of reliability could be secured when compared with the vibration method. Therefore, it is judged that the empirical formula for cable tension evaluation reflecting the estimated temperature proposed in this study can be used to predict the tension of cables according to climate change in the future and establish a maintenance plan.

An Estimate of Ballast Track Condition on Dynamic Behavior of Railway Bridge (철도교량의 동적거동 특성을 고려한 자갈도상궤도의 상태추정에 관한 연구)

  • Kweon, Oh-Soon;Choi, Jung-Youl;Kang, Myoung-Seok;Lee, Hee-Up;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.480-493
    • /
    • 2007
  • Many railway-advanced countries are using the various types of track to reduce the track maintenance and repair cost according to the improvement of velocity. It spends on much maintenance and repair cost for ballast track due to abrasion of ballast, track irregularity and unisotropical ballast-support stiffness. The ballast track on railway bridge is accelerating the deterioration of ballast according to interaction of railway bridge and track. As continuing the deterioration, it is caused dynamic loads. Due to these effects, it increases negative loads of track and bridge. However, when designing the railway bridge, the effect of ballast track was applicate only dead load, so elastic behavior effect of ballast track is not influenced. Therefore, this paper presumes the stiffness of ballast track on railway bridge considering dynamic behavior of railway bridge, it was evaluated that effect on dynamic behaviors of railway bridge according to ballast track stiffness.

  • PDF

Numerical Model Updating Based on Univariate Search Method for High Speed Railway Bridges (단변분 탐색법에 기초한 고속철도교량의 수치해석 모델 개선)

  • Park, Dong-Uk;Kim, Nam-Sik;Kim, Sung-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • Numerical model became one of most important tools for identifying the state of an existing structure in accordance with development of numerical analysis techniques. A numerical model should be updated based on the measured responses from the existing structure to accurately use the model for identifying the state of the bridge and executing numerical experiments. In this study, a new model updating method based on repetition method without a differential function is introduced and applicability for high speed railway bridge is verified with dynamic stability analysis. A fine measurement based on measurement points roaming method was executed with an wireless measurement system for precise dynamic characteristic analysis. The natural frequencies and mode shapes were estimated by correlation analysis and a mode decomposition technique. An initial numerical model was constructed based on design drawings and the model have been updated in accordance with the introduced model updating method. The results from numerical experiment and field test have been compared for verifying the applicability of the model updating method. And the dynamic stability analysis has been executed to verify the usability of the updated numerical model and the model updating method. It seems that the model updating method can be used for various bridges after evaluation of applicability for other type bridges in further studies.

A Study on Analysis of Real Response of Steel Railway Bridges (강철도교의 실응답해석에 관한 연구)

  • Chang, Dong Il;Choi, Kang Hee;Lee, Hee Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.43-54
    • /
    • 1989
  • In this paper, measured and calculated responses are compared in order to give how the static and dynamic responses occurred in steel railway bridges due to train loads could be calculated appropriately. From this, it is investigated how the impact factors are varied by changing the train speed above 100km/h Field measurement is carried out by the steel strain gages and displacement transducers at the main design points, and then the static and dynamic response, fundamental frequencies, damping ratios and impact factors of the bridges are obtained. Static analysis is done using the computer program developed according to three dimensional matrix structural analysis in which the trains and bridges are modelled as 1,2 and 3 dimensions. Dynamic analysis is done according to 2 approaches, the moving force and mass problem. In moving force problem, the solutions are obtained by the modesuperposition-method and in moving mass problem by the direct integration method. From this study, it is known that in order to obtain the static response in the railway bridges, the bridge could be modelled by 1 or 2 dimension as in the highway bridge, however the response ratio(measured/calculaled) is high comparing to the highway bridges. By the way, the dynamic response should be obtained by the moving mass problem. And by comparing the measured and code specified impact factors, it is known that the factors specified in the present railway bridge code are very safe under the present service speed below 100km/h. However, because the factors become very high under the speed above 100km/h, especially in the simple plate girder bridge, it is thought that the code specification on impact factor should be discussed enough under the rapid transit system.

  • PDF