• Title/Summary/Keyword: 철근 콘크리트 구조물

Search Result 1,420, Processing Time 0.031 seconds

Development of Expert System for Maintenance of Reinforced Concrete Structures (철근 콘크리트 구조물의 유지관리를 위한 전문가시스템 개발)

  • 심종성;배인환
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.89-96
    • /
    • 1991
  • The maintenance techniques of reinforced concrete structures, which include diagnosis, repair and rehabilit¬ation, are not systematically establishtxL This study develops an expert system for maintenance of reinforced concrete structures based on the related documents and knowledge and experience of experts who work in these field. The analytical results using the developed expert system were compared to the real repair cases in field and they were generally satisfactory.

Cathodic Protection of Reinforced Concrete Slab with Zn-Mesh in Marine Environment (해양환경 중 Zn-mesh를 적용한 콘크리트 슬랩의 음극방식 특성)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1065-1068
    • /
    • 2008
  • Marine bridges are readily deteriorated due to the exposure to marine environment. The concrete deterioration occurred by corrosion of steel in concrete is mainly relevant to chloride in seawater. Chloride ions penetrate through porous concrete, and then reach to the reinforcing steel, and finally corroded them. The corrosion by-products(rusts) increase the volume as much as 6 to 10 times of origin steel. this creates expanding pressure and tensile stress, which cause the structures cracking and spalling. Sometimes the rebar corrosion is accelerated, and then collapsed catastrophically. In order to prevent corrosion damage, it is important to understand well regarding the reason of concrete corrosion, the quantification of its damage, and protection method/system to stop or to mitigate the corrosion. In this study, slab specimens were fabricated to evaluate the effect of cathodic protection which was simulated to marine bridges, and/or port structures. Zn-mesh sacrificial anode has been applied as a chathodic protection system and accelerated test conditions, i.e. temperature and salt concentration have been used in this study.

  • PDF

Material Nonlinear Finite Element Analysis of Reinforced Concrete Structures (재료비선형성을 고려한 R/C 구조물의 유한요소해석)

  • Choi, Chang Koon;Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 1989
  • This paper concentrates on the analysis of reinforced concrete(R/C) structures subjected to monotonic loading, from zero to ultimate loads. Tensile cracking, the nonlinear stress-strain relationship for concrete and reinforcement are taken into account the concrete is assumed to be elastic in tension region and elasto-hardening plastic in compression region. The Kupfer's failure criteria and associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bar is considered as a elasto-hardening platic material. The tension stiffening effect of the concrete between cracks is also considered. The numerical error depends on the used finite element mesh size is reduced by correcting the slope of strain softening region of the concrete according to the developed energy criteria.

  • PDF

Size Effect Analysis for Shear Strength of Large Reinforced Concrete Beams (대형 철근콘크리트 보의 전단강도에 대한 크기효과 해석)

  • 한상호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.345-352
    • /
    • 1999
  • 철근콘크리트 보의 전단강도에 대한 크리효과는 다른 각종 강도에 대한 크기효과에 비해 현저히 나타난다는 것이 많은 실험적 연구로부터 입증되었으며, 이를 배경으로 세계 여러 나라의 전단강도에 대한 설계 기준식들이 전단강도의 크리효과를 반영하고 있는 실정이다. 그러나, 철근콘크리트 구조물이 점점 대형화됨으로써 이와 같은 설계 기준식의 실험적 검토는 사실상 불가능하게 될 것이다. 본 연구에서는 파괴역학에 근거한 비선형 유한요소프로그램을 이용하여 전단보강철근이 없는 대형 철근콘크리트 보의 전단강도에 대한 크기 효과를 재현해 보았다. 또한, 해석 및 실험결과를 이용하여 크기효과가 고려된 몇 가지 대표적인 전단강도식과 비교하였다.

  • PDF

Design of Fire-Resistance in RC Structure Buildings (콘크리트 구조물의 내화설계)

  • 김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.30-36
    • /
    • 2002
  • 콘크리트가 화재에 노출될 경우 가열에 의한 재질의 노화 및 열팽창에 의한 열응력의 발생에 따라 주요구조부인 기둥 및 보에 큰 손상이 생기게 되어 그 내력은 크게 저하하게 된다. 철근 콘크리트 구조물의 화재 상황을 조사해 보면 (그림 1)과 같이 열응력에 의한 기둥의 전단파괴, 보의 휨파괴 및 부재의 폭열 등이 보여진다.(중략)

Chloride Diffusion Coefficients in Cold Joint Concrete with GGBFS (고로슬래그 미분말을 혼입한 콜드조인트 콘크리트의 염화물 확산계수)

  • Oh, Kyeong-Seok;Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.44-49
    • /
    • 2016
  • Among the deteriorating agents, chloride ion is reported to be one of the most harmful ions due to its rapid diffusion and direct effect on steel corrosion. Cold joint which occurs in mass concrete placing is vulnerable to shear resistance and more severe deterioration. The paper presents an quantitative evaluation of chloride diffusion coefficient in OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) concrete containing cold joint. GGBFS concrete shows $6.6{\times}10^{-12}m^2/sec$ which is almost 30% level of OPC concrete results and the trend is repeated in the case of cold joint concrete. Compared with OPC concrete, GGBFS concrete is evaluated to have better resistance to chloride penetration, showing 0.30 times of chloride diffusion coefficient in concrete without cold joint 0.39 times with cold joint, respectively.

Collapse Modeling of model RC Structure Using Applied Element Method (AEM을 이용한 철근콘크리트 모형 구조물의 붕괴 모델링)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • In order to analyze collapse behavior of structure containing irregular and large displacement, many numerical analyses have been conducted. In this study, using a new method, Applied Element Method (AEM) for collapse analysis of structures, collapse behavior of model RC structures Is simulated. From these simulations results, displacement of X-direction (or horizontal) and displacement of Y-direction (or vertical) is similar to that of mode) RC structures. It is confirmed that collapse behavior of structures using AEN is reliable accurately simulated with that of model RC structures.

Probabilistic Estimation of Service Life of Box Culvert for Power Transmission Considering Carbonation and Crack Effect (탄산화와 균열을 고려한 전력구 콘크리트 구조물의 확률론적 수명 예측)

  • Woo, Sang-Kyun;Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.30-40
    • /
    • 2014
  • The demand of underground structure such as box culvert for electric power transmission is increasing more and more, and the service life extension of these structures is very important. Recent observations in field and experimental evidences show that even steel in concrete can be corroded by carbonation reaction of cover concrete. Carbonation-induced corrosion in concrete may often occur in a high carbon dioxide environment. In this study, the risk of carbonation of box culverts in our nation was evaluated by measuring the carbonation rate and concrete cover depth in field. Then, the service life due to carbonation at the cover depth was calculated by in situ information and the Monte Carlo simulation in a probabilistic way. Additionally, the accelerated carbonation test for the cracked beam specimen was executed and the crack effect owing to the carbonation process on the service life of box culvert was numerically investigated via Monte Carlo simulation based on the experimental results.

Service Life Prediction of R.C. Structures Considering Chloride Binding (염화물 고정화를 고려한 철근 콘크리트 구조물의 내구수명 예측)

  • Lee, Chang-Soo;Park, Jong-Hyok;Kim, Young-Ook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • Chloride-induced corrosion of steel bars in concrete exposed to marine environments has become one of the major causes of deterioration in many important facilities made of reinforced concrete. A study on chloride penetration in concrete has developed through long period exposure test along seawater, assesment of chloride ion diffusion by electrochemical techniques and so on. However, reasonable and exclusive chloride penetration model considering concrete material properties with mixture, degree of hydration, binding capacity has not been established. Therefore, in this paper, chloride penetration analysis of non-steady state is accomplished with material properties of concrete. Comparing with the results of analysis and chloride ponding test, we could accept the effect of binding capacity on chloride penetration in concrete and these results could be applied to a service life prediction of R.C. structures submerged in seawater. Therefore, there are 20~40% differences of service life to SHRP prediction.