• Title/Summary/Keyword: 철근의 영향

Search Result 942, Processing Time 0.038 seconds

Probabilistic Service Life Evaluation for OPC Concrete under Carbonation Considering Cold Joint and Induced Stress Level (콜드조인트 및 재하 응력을 고려한 탄산화에 노출된 OPC 콘크리트의 확률론적 내구수명평가)

  • Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.45-52
    • /
    • 2019
  • Steel corrosion due to carbonation in RC (Reinforced Concrete) structures easily occurs in urban cities with high CO2 concentration. RC structures are always subjected to external loading with various boundary conditions. The induced stress level causes changes in diffusion of harmful ion like CO2. In this work, a quantification of carbonation progress with stress level is carried out and carbonation prediction is derived through the relations. Determining the design parameters like cover depth, CO2 diffusion coefficient, carbonatable materials, and exterior CO2 concentration as random variables, service lifes under carbonation with design parameter's variation are obtained through MCS(Monte Carlo Simulation). Additionally the service life with different stress level is derived and the results are compared with those from deterministic method. Cover depth and cement hydrates are evaluated to be very effective to resist carbonation, and the proposed method which can consider the effect of stress on service life can be applied to maintenance priority determination.

Plasticity Model for Directionality of Concrete Crack Damages (콘크리트 균열 손상의 방향성을 고려한 다중파괴기준 소성 모델)

  • Kim, Jae-Yo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.655-664
    • /
    • 2007
  • The inherent characteristic of concrete tensile cracks, directional nonlocal crack damage, causes so-called rotating tensile crack damage and softening of compressive strength. In the present study, a plasticity model was developed to describe the behavior of reinforced concrete planar members In tension-compression. To describe the effect of directional nonlocal crack damage, the concept of microplane model was combined with the plasticity model. Unlike existing models, in the proposed model, softening of compressive strength as well as the tensile crack damage were defined by the directional nonlocal crack damage. Once a tensile cracking occurs, the microplanes of concrete are affected by the nonlocal crack damage. In the microplanes, microscopic tension and compression failure surfaces are calculated. By integrating the microscopic failure surfaces, the macroscopic failure surface is calculated. The proposed model was implemented to finite element analysis, and it was verified by comparisons with the results of existing shear panel tests.

Study for Rigid and Flexible Pipe Interaction at the Crossing Point of Underground Pipeline Network (지하 매설 교차 관망 내 강.연성관의 상호작용에 관한 연구)

  • Kim, Mi-Seung;Won, Jong-Hwa;Kim, Moon-Kyum;Kim, Jeong-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2009
  • The result of this research explains an interactive behavior of buried steel pipe located below hume pipe using concept of effective depth and effective length against their intersection angle and burial distance. The cover depth of upper rigid (hume) pipe is 1.0m and depth range of flexible (steel) pipe is 0.5m to 5m from beneath bottom of hume pipe. And one more variable is their intersection angle in this study, it was considered from $0^{\circ}$ to $90^{\circ}$. From the results of this study, the effective depth is proportionally increasing with its intersection angle and decreasing with distance increment between two pipes. Finally, the relationship between effective length and summation of occurred bending stress is defined.

  • PDF

The Variations on The Fire Resistance of High Strength Concrete Column Incorporating Organic Fiber with Assessment Methods (유기 섬유 혼입 고강도 콘크리트 부재의 평가 방법에 따른 내화성능 변화에 관한 연구)

  • Lee, Seung-Hoon;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.945-948
    • /
    • 2008
  • Fire resistance is a measure of the ability of building element to resist a fire. For concrete columns, the fire resistance depends on many factors, including strength, density, and moisture content of concrete, fire intensity, column size and shape, reinforcement detail, loading condition, and aggregate type etc. However, it is well-known that the high strength concrete (HSC) is more susceptible to spalling than normal strength concrete (NSC) and the behaviour of HSC column exposed to fire is significantly affected by the spalling. Recently, as one of the measures to reduce the spalling of HSC, incorporating polypropylene(PP) fiber has been investigated and successfully used in construction fields. However, the establishment of assessment method on the fire resistance of HSC column is very important as well as the improvement of fire performance of HSC. In this study, the variations on the fire resistance of HSC column with assessment methods was studied for the columns controlled the concrete spalling by PP fiber.

  • PDF

An Experimental Study on the Mechanical Properties of High Density Concrete Using Magnetite Aggregate (자철광 골재를 이용하는 철근콘크리트의 역학적 특성에 관한 관험적 연구)

  • 반호용;한천구;김을용
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.3
    • /
    • pp.81-88
    • /
    • 1990
  • For the protectioon of radioactive leakage, the quality control of main concrete structure in nuclear power plants is very important. So, this studey is designed to analyze the influence of kind of cement and aggregate on the mechanical properties of high density concrete. Test results of this study are as follows; 1)The slump of magnetite aggregate concrete(MAC) is found half value of nat.ural aggregate concrete (NAC). 2)As the effect of cement, the compressive strength of concrete using moderate heat cement is found higher 5-19 % than that of ordinary portland cement. 3)As the effect of fine aggregate, t.he compressive strength of MAC is found higher than that. of NAC below 340kg/$cm^2$ and lower t.han NAC above 340kg/$cm^2$. 4)As the effect of coarse aggregate, the compressive strength of MAC is found higher 17-22% than that of NAC.

Optimum Design of PSC Box Girder Bridge considering the Influence of Unequal Span Length Division, Load Factor, and Variable Girder Depth (부등 경간 비율, 하중계수 및 변단면의 영향을 고려한 PSC 박스 거더교의 최적설계)

  • 박문호;김기욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.309-318
    • /
    • 2004
  • This research automatically designed psc-box girder bridges by using an optimum design program and applied the results to the various types of bridges to verify if common facts used in steel bridges or concrete bridges can be applied to PSC bridges. Namely, it investigated appropriate unequal span length division by comparing with bridge of unequal and equal span length division, and verified the influence of the load factors which are changed by time or specification applying the results to various types of bridge. and it applied reinforced concrete bridge and steel bridge's variable girder depth which is slender and effective to save material costs to PSC box girder bridges. Technical solution of optimum design program used SUMT procedure, and Kavlie's extended penalty function to allow infeasible design points in the process. Powell's direct method was used for searching design points and a gradient's approximate method was used to reduce the design time.

Nonlinear Behavior Analysis of RC Shear Wall Using Truss Theory (트러스 이론을 이용한 철근 콘크리트 전단벽의 비선형 거동해석)

  • Seo, Soo-Yeon;Kim, Jeong-Sik;Choi, Yun-Chul;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.213-220
    • /
    • 2005
  • Recently, a concern to verify the displacement capacity of shear wall has been arised to produce suitable data for the performance based design. In this paper, a process is presented to evaluate the displacement capacity of shear wall. The displacement of shear wall is expressed as the superposition of shear and flexural deformation. Variable crack angle truss model with a modification and sectional analysis method are used in calculating shear and flexural displacement, respectively. In addition, the effect of axial force and the contribution of vertical and horizontal reinforcements in wall are considered in the analysis. The accuracy of proposed method is evaluated by the comparison calculation results with previous test results. From the comparison, it was shown that the hysteretic behavior of shear wall could be well predicted by using the process. In the case with flange wall, however, the method overestimates the contribution of flange wall for strength and stiffness and underestimates for displacement capacity.

Nonlinear Analysis of Incheon Bridge Considering Time-Dependent Behavior of Concrete Pylon (콘크리트 주탑의 시간 의존적 거동을 고려한 인천대교의 비선형 해석)

  • Ha, Su-Bok;Kim, Jin-Il;Hwang, Chang-Hee;Shin, Hyun-Mock;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.155-162
    • /
    • 2012
  • Recently, building of long span bridge is increasing and cable stayed bridges have large portion in civil projects. As the spans of bridges become longer, steel cable-stayed bridges have been constructed mainly for slim structure. But in many case, pylons are constructed by concrete for the stability of structures and the economy. Concrete is greatly influenced by the long-term behavior like creep and drying shrinkage, so analysis of stress redistribution and structural change in construction is required. In this study, as a cable stayed bridge with concrete pylon, Incheon Bridge is analyzed by nonlinear FEM analysis program RCAHEST. Through this analysis, time dependent effect of concrete pylon to whole cable stayed bridge system is studied.

Structural Performance of Hybrid Coupled Shear Wall System Considering Connection Details (접합부 상세에 따른 복합 병렬 전단벽 시스템의 구조 성능)

  • Park, Wan Shin;Yun, Hyun Do;Kim, Sun Woong;Jang, Young Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.128-137
    • /
    • 2012
  • In high multistory buildings, hybrid coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic loads. Hybrid coupled shear walls are usually built over the whole height of the building and are laid out either as a series of walls coupled by steel beams with openings to accommodate doors, elevator walls, windows and corridors. In this paper, the behavior characteristics of hybrid coupled shear wall system considering connection details is examined through results of an experimental research program where 5 two-thirds scale specimens were tested under cyclic loading. Such connections details are typically employed in hybrid coupling wall system consisting of steel coupling beams and reinforced concrete shear wall. The test variables of this study are embedment length of steel coupling beam and wall thickness of concrete shear wall. The results and discussion presented in this paper provide fundamental data for seismic behavior of hybrid coupled shear wall systems.

The Presence in Embryo Extract of a Myotrophic Protein That Affects Proliferation and Fusion of Chick Embryonic Myoblasts in Culture (배양 계배 근원세포의 분화에 미치는 계배 추출물내 Myotrophic Protein의 영향)

  • 유병제;이창호;곽규봉;정진하;하두봉
    • The Korean Journal of Zoology
    • /
    • v.31 no.3
    • /
    • pp.207-217
    • /
    • 1988
  • A myotrophic protein that seemed to he eseentiai for the hision of chick embryonic myoblasts in culture was isolated from chick embryo extrad and was found to be identical or at least similar to the iron-transporting protein, transferrin. Embryo extract seemed to contain, in addition to this myotrophic protein, a heat stable protein that inhibits the fusion of myoblasts. Iron seemed to he necessary for myoblasts to fuse and it was supposed that the role of the myotrophic protein m myoblast fusion is to supply iron to the cell. The numher of the myotrophic protein receptors on myoblast surface membrane decreased immediately after the start of myoblast fusion, supposedly due to the decreased need of iron after the fusion once commenced. It was estimated that endocytosis of myotrophic protein took about 10 minutes and one recycling about 2 hours. The accumulation of iron in myoblasts continued linearly with cultre time and endocytosis of the myotrophic protein occured at a constant rate.

  • PDF