DOI QR코드

DOI QR Code

Probabilistic Service Life Evaluation for OPC Concrete under Carbonation Considering Cold Joint and Induced Stress Level

콜드조인트 및 재하 응력을 고려한 탄산화에 노출된 OPC 콘크리트의 확률론적 내구수명평가

  • Kwon, Seung-Jun (Department of Civil and Environmental Engineering, Hannam University)
  • 권성준 (한남대학교 건설시스템 공학과)
  • Received : 2019.06.19
  • Accepted : 2019.09.05
  • Published : 2019.11.01

Abstract

Steel corrosion due to carbonation in RC (Reinforced Concrete) structures easily occurs in urban cities with high CO2 concentration. RC structures are always subjected to external loading with various boundary conditions. The induced stress level causes changes in diffusion of harmful ion like CO2. In this work, a quantification of carbonation progress with stress level is carried out and carbonation prediction is derived through the relations. Determining the design parameters like cover depth, CO2 diffusion coefficient, carbonatable materials, and exterior CO2 concentration as random variables, service lifes under carbonation with design parameter's variation are obtained through MCS(Monte Carlo Simulation). Additionally the service life with different stress level is derived and the results are compared with those from deterministic method. Cover depth and cement hydrates are evaluated to be very effective to resist carbonation, and the proposed method which can consider the effect of stress on service life can be applied to maintenance priority determination.

이산화탄소 농도가 높은 도심지의 경우 탄산화로 인한 철근부식이 발생하기 쉬우며 이는 콘크리트 구조물의 내구수명을 감소시킨다. 콘크리트 구조물의 경우 다양한 구속조건을 가지며 항상 외부의 재하하중을 받고 있다. 도입된 응력수준은 이산화탄소와 같은 유해인자의 확산을 변화시키며 탄산화 깊이의 변동성을 야기한다. 본 연구에서는 응력재하수준에 따른 탄산화 변동성을 정량화하였으며, 이를 이용하여 탄산화 예측식을 도출하였다. 내구성 설계인자인 피복두께, 이산화탄소 확산계수, 탄산화 반응 수화물, 그리고 외부 이산화탄소 농도를 확률변수로 정의하였으며, MCS을 통하여 영향인자의 변동성에 따른 내구수명을 도출하였다. 또한 응력수준에 따라 변화하는 내구수명을 도출하였으며, 이를 결정론적인 방법의 결과와 비교하였다. 피복두께 및 내부 수화물 생성이 내구수명 변동성에 가장 큰 영향을 미쳤으며, 응력수준을 고려한 내구수명평가는 유지관리 우선순위 설정에 합리적으로 적용할 수 있다.

Keywords

References

  1. Banthia, N., Biparva, A., and Mindess, S. (2005), Permeability of concrete under stress, Cement and Concrete Research, 35(9), 1651-1655. https://doi.org/10.1016/j.cemconres.2004.10.044
  2. Bae, Y. W., and Lim, N. G. (2012), Resistance of chloride penetration of fiber reinforced concrete under loading condition, Journal of the Architectural Institute of Korea Structure & Construction, 28, 2867-2874.
  3. CEB. (1997), New Approach to Durability Design, 96-102.
  4. Choinska, M., Khelidj, A., Chatzigeorgiou, G., and Pijaudier-Cabot, G. (2007), Effects and interactions of temperature and stress-level related damage on permeability of concrete, Cement and Concrete Research, 37(1), 79-88. https://doi.org/10.1016/j.cemconres.2006.09.015
  5. Cho, S. J., Yoon, Y. S., and Kwon, S. J. (2018), Carbonation Behavior of GGBFS-based Concrete with Cold Joint Considering Curing Period, Journal of the Korean Recycled Construction Resources Institute, 6(4), 259-266. https://doi.org/10.14190/JRCR.2018.6.4.259
  6. Defaux, G., Pendola, M., and Sudret, B. (2006), Using spatial reliability in the probabilistic study of concrete structures: The example of a reinforced concrete beam subjected to carbonation inducting corrosion, Journal de Physique IV, 136(1), 243-253. https://doi.org/10.1051/jp4:2006136025
  7. Duprat, F. and Sellier, A. (2006), Probabilistic approach to corrosion risk due to carbonation via an adaptive response surface method, Probabilistic Engineering Mechanics, 21(3), 207-216. https://doi.org/10.1016/j.probengmech.2005.11.001
  8. EN-1991. (2000), Eurocode 1: Basis of Design and Actions on Structures, European Committee for Standardization(Comite Europeen de Normalisation, CEN).
  9. Ecoseoul. (2013), Map of CO2 concentrations in Seoul. Available at: http://www.ecoseoul.or.kr/xe/?document_srl=1893070.
  10. Hwang, S. H., Yoon, Y. S., and Kwon, S. J. (2019), Carbonation Behavior Evaluation of OPC Concrete Considering Effect of Aging and Loading Conditions, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(1), 122-129. https://doi.org/10.11112/JKSMI.2019.23.1.122
  11. Izumi, I., Kita, D., and Maeda, H. (1986), Carbonation, Kibo press Publication, Tokyo, 35-88.
  12. Ishida, T., and Maekawa, K. (2000), Modeling of PH profile in pore water based on mass transport and chemical equilibrium theory, Doboku Gakkai Ronbunshu, 2000(648), 203-215. https://doi.org/10.2208/jscej.2000.648_203
  13. Koh,T.- H., Kim, M.- K., Yang, K.- H., Yoon, Y.- S., and Kwon, S.-J. (2019), Service Life Evaluation of RC T-girder under Carbonation Considering Cold joint and Loading Effects, Construction and Building Materials, 229, 106-116.
  14. Kwon, S. J., Song, H. W., Byun, K. J., and Lee, S. H. (2004), Analysis of Carbonation Behavior of Cracked Concrete in Early - Age, Journal of The Korean Society of Civil Engineers, 24(5A), 1011-1022.
  15. Kwon, S. J., Park, S. S., Nam, S. H., and Cho, H. J. (2007), A Study on Survey of Carbonation for Sound, Cracked, and Joint Concrete in RC Column in Metropolitan City, Journal of the Korea Institute for Structural Maintenance and Inspection, 11(3), 116-122.
  16. Kwon, S. J., and Na, U. J. (2011), Prediction of Durability for RC Columns with Crack and Joint under Carbonation Based on Probabilistic Approach, International Journal of Concrete Structures and Materials, 5(1), 11-18. https://doi.org/10.4334/IJCSM.2011.5.1.011
  17. KCI. (2012), Concrete Specification- Durability Part, Korea Concrete Institute, Seoul, 637-672.
  18. Kwon, S. J., Lee, B. J., and Kim, Y. Y. (2014), Concrete mix design for service life of RC structures under carbonation using genetic algorithm, Advances in Materials Science and Engineering, 2014, 1-13.
  19. Lee, J., Lee, B. C., Cho, Y. K., Park, K. M., and Jung, S. H. (2017), Carbonation Properties of Recycled Aggregate Concrete by Specified Concrete Strength, Journal of the Korean Recycled Construction Resources Institute, 5(1), 85-93. https://doi.org/10.14190/JRCR.2017.5.1.085
  20. Maekawa, K., Ishida, T., and Kishi, T. (2008), Multi-Scale Modeling of Structural Concrete, Taylor & Francis, Florida, 86-105.
  21. Na, U. J., Kwon, S. J., Chaudhuri, S. R., and Shinozuka, M. (2012), Stochastic Model for Service Life Prediction of RC Structures Exposed to Carbonation using Random Field Simulation, KSCE Journal of Civil Engineering, 16(1), 133-143. https://doi.org/10.1007/s12205-012-1248-7
  22. Papadakis, V. G., Vayenas, C. G., and Fardis, M. N. (1991), Physical and chemical characteristics affecting the durability of concrete, Materials Journal, 88(2), 186-196.
  23. Song, H. W., and Kwon, S. J. (2007), Permeability characteristics of carbonated concrete considering capillary pore structure, Cement and Concrete Research, 37(6), 909-915. https://doi.org/10.1016/j.cemconres.2007.03.011
  24. Tegguer, A. D., Bonnet, S., Khelidj, A., and Baroghel-Bouny, V. (2013), Effect of uniaxial compressive loading on gas permeability and chloride diffusion coefficient of concrete and their relationship, Cement and Concrete Research, 52, 131-139. https://doi.org/10.1016/j.cemconres.2013.05.013
  25. Yang, K. H., Song, J. K., and Song, K. I. (2013), Assessment of CO2 reduction of alkali-activated concrete, Journal of Cleaner Production, 39, 265-272. https://doi.org/10.1016/j.jclepro.2012.08.001
  26. Yang, H. M., Lee, H. S., Yang, K. H., Ismail, M. A., and Kwon, S. J. (2018), Time and cold joint effect on chloride diffusion in concrete containing GGBFS under various loading conditions, Construction and Building Materials, 167, 739-748. https://doi.org/10.1016/j.conbuildmat.2018.02.093
  27. Yang, K. H., Mun, J. H., Yoon, Y. S., and Kwon, S. J. (2018), Effects of loading conditions and cold joint on service life against chloride ingress, Computers and Concrete, 22(3), 319-326. https://doi.org/10.12989/CAC.2018.22.3.319