• Title/Summary/Keyword: 철근의 영향

Search Result 942, Processing Time 0.028 seconds

System Development for Analysis and Compensation of Column Shortening of Reinforced Concrete Tell Buildings (철근콘크리트 고층건물 기둥의 부등축소량 해석 및 보정을 위한 시스템 개발)

  • 김선영;김진근;김원중
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.291-298
    • /
    • 2002
  • Recently, construction of reinforced concrete tall buildings is widely increased according to the improvement of material quality and design technology. Therefore, differential shortenings of columns due to elastic, creep, and shrinkage have been an important issue. But it has been neglected to predict the Inelastic behavior of RC structures even though those deformations make a serious problem on the partition wall, external cladding, duct, etc. In this paper, analysis system for prediction and compensation of the differential column shortenings considering time-dependent deformations and construction sequence is developed using the objected-oriented technique. Developed analysis system considers the construction sequence, especially time-dependent deformation in early days, and is composed of input module, database module, database store module, analysis module, and analysis result generation module. Graphic user interface(GUI) is supported for user's convenience. After performing the analysis, the output results like deflections and member forces according to the time can be observed in the generation module using the graphic diagram, table, and chart supported by the integrated environment.

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.

Structural Behavior of 3D Printed Concrete Specimens with Reinforcement (보강재가 있는 3D 프린팅 콘크리트의 구조거동)

  • Joh, Changbin;Lee, Jungwoo;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • This paper examines the structural behavior of 3D printed concrete specimens with focus on the bond between the layers. The tensile bond and flexural strengths were investigated experimentally and compared with those of specimens made by conventional mold casting. The test parameters were the time gap between printing layers and the reinforcement between vertical layers. The results showed the 3D printed specimens had voids between layers and confirmed the strength reduction due to printing time gap and the stress concentration caused by the voids. Most of the reduction in tensile bond strength between layers was due to the stress concentration at least up to certain printing time gap. Moreover, beyond a certain printing time gap (24hours), the additional reduction in tensile bond strength reached a level that could affect the structural behavior. The reinforcement between layers was helpful to increase the ductile behavior which is essential to prevent the sudden collapse of the structure. In addition, the reduction in flexural strength due to the stress concentration by the voids was observed and should be considered in the design of 3D printed wall structures against the lateral load.

Evaluation of Apparent Chloride Diffusion Coefficient of Fly Ash Concrete by Marine Environment Exposure Tests (해양 환경 폭로 시험을 통한 FA 콘크리트의 겉보기 염화물 확산계수 평가)

  • Yoon, Yong-Sik;Lim, Hee-Seob;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.119-126
    • /
    • 2019
  • In case of RC(Reinforced Concrete) structures which are constructed in coastal areas, chloride ions in sea water corrode the steel rebar in concrete. Especially in coastal areas, RC structures are affected by not only immersion of sea water, but also tidal of sea water and airborne chloride ions. In this study, marine environment exposure tests are conducted, considering 3 types of exposure environments(immersion zone, tidal zone, splash zone) and the exposure periods of 180 days, 365 days, and 730 days. Also, the concrete mixtures for this study are established, considering 3 levels of W/B(Water to Binder) ratio(0.37, 0.42, 0.47) and 2 levels of substitution rate of Fly ash(0 %, 30 %). In all exposure environments, Fly ash concrete has lower apparent chloride diffusion coefficients than OPC concrete. It is thought that fly ash's pozzolan reaction improves chloride resistance of concrete. Fly ash concrete has up to 63.5 % of decreasing rate in 180 days of exposure and up to 55.8 % of decreasing rate in 730 days of exposure, based on diffusion coefficients of OPC concrete. As a result of evaluation about effects of exposure environments, apparent chloride diffusion coefficients of fly ash concrete are evaluated in order of tidal zone, immersion zone, and splash zone. In tidal zone, It is thought that repeated cycles of wetting and drying of sea water cause the diffusion of chloride ions rapidly.

Evaluation for Ultimate Flexural Strength of Steel Composite Girder with High Strength Concrete (고강도 콘크리트 강합성 거더의 극한휨강도 실험 평가)

  • Kim, Woon Hak;Lee, Juwon;Lee, Seokmin
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.796-805
    • /
    • 2020
  • Purpose: A static loading test was performed to evaluate the ultimate flexural strength of a girder in which 80MPa high-strength concrete was synthesized on the compressive flange of the I-shape steel girder. Method: This test is designed and fabricated two types of specimens with different shear-connection specifications, and evaluated their ultimate flexural behavior until reaching the extreme event limit states. In addition, the ultimate strength was evaluated by comparing the test results and the results of the strain compatibility method. Result: By confirming the displacement within 0.02mm as a result of the relative slip measurement, it was verified that the two specimens secured perfect bonding. Therefore, the difference in the shear specification does not have a great effect on the stiffness, and if the specimens are completely synthesized, there is no difference in the behavior until it reaches the extreme-event limit states. Conclusion: The girder to be tested has a working load within the elastic range and meets the usability requirements for allowable deflection. Therefore, even if a part of the casing is subjected to the tensile force at the level of cracking, the deck will first reach the compression failure due to the role of the reinforcing bar.

A Study on Electromagnetic Properties in OPC Mortar with Different Chloride Content (염화물을 혼입한 OPC 모르타르의 전자기 특성에 대한 연구)

  • Kwon, Seung-Jun;Na, Ung-Jin;Feng, M.Q.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.565-571
    • /
    • 2008
  • Recently, the evaluation technique using NDT (Nondestructive Technique : NDT) is widely utilized because it makes little damage on RC (Reinforced Concrete : RC) structures. The techniques using electromagnetic properties (EM properties) are also attempted for the evaluation of the performance of concrete which is nonmetallic. For the economic manufacturing of concrete material, sea-sand is often used as aggregate, however, chloride ion in concrete has direct effects on steel corrosion and EM properties. In this study, OPC mortar specimens with 5 different chloride amount (0.0, 0.6, 1.2, 2.4, and $3.6kg/m^3$) and 3 different water-cement ratios (45%, 55%, and 65%) are prepared in order to investigate the EM properties corresponding to concrete properties. The EM properties of conductivity and dielectric constant are measured in the frequency range over 0.2~20 GHz. To facilitate the comparison of EM properties with chloride content, average values are taken respectively for the conductivity and dielectric constant measured over the 5~20 GHz frequency range. According to the results of this experiment, dielectric constant and conductivity are increased with lower W/C ratio and larger amount of chloride content.

Reinforcement Effect of Cracked Concrete Tubes and Box Culverts by Installing Profile with Steel Stiffener and High Strength Mortar (스틸보강재가 부착된 프로파일 및 고강도 모르타르를 이용한 균열손상 콘크리트관의 보강효과)

  • Yeo, Sang Rok;Cho, Eun Sang;Hwang, Won Sup;Jeong, Jae Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.69-78
    • /
    • 2008
  • In this study, in order to verify the reinforcement effects of the cracked concrete tubes and culverts, static load test was conducted. After the load carrying capacity of the original concrete tubes (nominal diameter 0.8 m, 1.0 m, 1.5 m) and box culverts (inner width 2.0 m. 2.5 m) was reduced by the cracking test, the cracked concrete specimens were strengthened by installing profile with steel stiffener and high strength mortar. And then, the maximum load tests were conducted the renewal concrete tubes and box culverts. According to the method application, the load carrying capacity increased 1.66~3.50 times than it of the original tubes before applying the method. In case of the original box culverts, the load carrying capacity increased 1.66~3.10 times than the case before installing profile and high strength mortar. Also non-linear analysis was carried out by using the commercial FEM program of ABAQUS 6.6. Solid (C3D8R) elements and concrete damage plasticity option was applied to the analysis. For reflecting confined reinforcing bars in the analysis, the composite material properties were used.

A Study on Generation Quality Comparison of Concrete Damage Image Using Stable Diffusion Base Models (Stable diffusion의 기저 모델에 따른 콘크리트 손상 영상의 생성 품질 비교 연구)

  • Seung-Bo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.55-61
    • /
    • 2024
  • Recently, the number of aging concrete structures is steadily increasing. This is because many of these structures are reaching their expected lifespan. Such structures require accurate inspections and persistent maintenance. Otherwise, their original functions and performance may degrade, potentially leading to safety accidents. Therefore, research on objective inspection technologies using deep learning and computer vision is actively being conducted. High-resolution images can accurately observe not only micro cracks but also spalling and exposed rebar, and deep learning enables automated detection. High detection performance in deep learning is only guaranteed with diverse and numerous training datasets. However, surface damage to concrete is not commonly captured in images, resulting in a lack of training data. To overcome this limitation, this study proposed a method for generating concrete surface damage images, including cracks, spalling, and exposed rebar, using stable diffusion. This method synthesizes new damage images by paired text and image data. For this purpose, a training dataset of 678 images was secured, and fine-tuning was performed through low-rank adaptation. The quality of the generated images was compared according to three base models of stable diffusion. As a result, a method to synthesize the most diverse and high-quality concrete damage images was developed. This research is expected to address the issue of data scarcity and contribute to improving the accuracy of deep learning-based damage detection algorithms in the future.

Stability Analysis of Concrete Shear Wall System with Opening (개구부를 갖는 전단벽의 안정해석)

  • Lee, Soo-Gon;Kim, Soon-Chul;Song, Chang-Young;Song, Sang-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.109-118
    • /
    • 2005
  • A concrete shear wall system is commonly adopted in high-rise residential apartment buildings. In the construction stage, a rectangular opening is often made for the convenience of horizontal movement of workers, and construction materials and equipment. In the case of safety or stability assessment of a shear wall, the cutout part can be a critical factor. Finite element method is adopted to investigate the elastic stability behavior of the perforated unit shear wall. The key analysis parameters are the cutout location and its size. The effect of out-of-plane bending and horizontal shear are also examined in the stability analysis.

Basic Properties of Polymer Cement Mortar with EVA Emulsion and Admixtures (EVA 에멀젼과 혼화재를 사용한 폴리머 시멘트 모르타르의 기초적 성질)

  • Jo, Young-Kug
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.53-60
    • /
    • 2019
  • The purpose of this study is to evaluate the degree of improvement in strengths by mixing blast-furnace slag and fly ash in polymer cement mortar(PCM). The test specimens are prepared with EVA polymer dispersion, two types of Admixtures (blast-furnace slag and fly ash), five kinds of polymer-cement ratios (0, 5, 10, 15 and 20%), and six kinds of admixtures (0, 3, 5, 10, 15 and 20%). Plain cement mortar is also made for comparison. From the test results, the flowing of PCM is greatly improved with the mixing of the admixtures, and strengths of PCM compared to ordinary cement mortar are also improved due to a decrease in water cement ratio. In addition, the strength characteristics of PCM by admixtures are greatly improved in flexural strength with fly ash compared to other strengths. It is apparent that the optimum mix proportions with polymer-cement ratio of 10% or more, admixture contents 5 to 10% of flay ash for flexural strength improvement of EVA-cement mortar are recommended in this study.