Stability Analysis of Concrete Shear Wall System with Opening
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Abstract

A concrete shear wall system 1s commonly adopted in high-rise residential apartment
buildings. In the construction stage, a rectangular opening is often made for the convenience
of horizontal movement of workers, and construction materials and equipment. In the case of
safety or stability assessment of a shear wall, the cutout part can be a critical factor. Finite
element method is adopted to investigate the elastic stability behavior of the perforated unit
shear wall. The key analysis parameters are the cutout location and its size. The effect of
out-of—plane bending and horizontal shear are also examined in the stability analysis.
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1. Introduction

For the high-rise residential apartment build—
ings, a concrete shear wall system is commonly
adopted. During the construction stage of this
shear wall system, a rectangular opening is usu-—
ally made in the wall (see Fig.l) for easy and
rapid movement of construction workers, mate-
rials and equipment. The cutout part is usually
filled with cement bricks just before the final
stage of room finishing. In this case, one can
not expect perfect monolithic shear wall behav—
ior especially when it is subjected to wind or
earthquake induced horizontal load. This sug-—
gests that the perforated part in the shear wall
can be a critical factor in the structural design
or safety assesment of multi-story shear wall
buildings.

Finite element method is adopted to inves—
tigate the elastic stability behavior of The per—
forated unit shear wall shown in Fig. 1. In the
wall, cutout location and its size are made to
change. The example shear wall has the ratio
a/t=270cm/18cm=15>10 and so it is assumed that
unit shear wall satisfies Kirchhoff hypothesis.
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Fig. 1 Schematic view of example shear building
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2. Scope of the study

Fig. 2 shows the shear wall unit chosen for
the stability analysis by finite element method.
In the same figure, two analysis parameters and
their change patterns are also shown. As can be
seen in the figure, ¢ denotes the maximum flexural to
the uniform gravity stress ratio, which is made to
change from zero to 0.6 with subinterval 0.2 And j,
horizontal shear to gravity force ratio is to change
from zero to 0.15 with subinterval 0.05. In the same
figure, A, B, C and D designate the locations where the
cutout is made. The symbols, C,, C,, -+, Cg de-
note the size of the perforated part. For example, C,

means the wall without opening and C, means the

wall with an opening of 09m (horizontal) X 0.3m
(vertical).
Fig. 3 shows the assumed boundary conditions
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(b) cutout size

Fig. 2 Shear wall unit
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s ! simple supported edge,
f : free edge, c : clamped edge

Fig. 3 Boundary conditions

for the shear wall unit. As can be seen in the
figure, the loaded edges are simply supported
for all of the cases. One can easily expect that
the behavior of the plate with the boundary
conditions of Fig. 3(a) will be similar to that of
a column with simply supported ends. In the
shear wall buildings, the deformation of the
unloaded edges can be restrained by the col-
umns or by the walls which form right angles
to the unloaded edges in the horizontal plan.
To take these facts into consideration, un-
loaded edges are assumed to be either simply
supported or completely fixed.

3. Displacement function and element
stiffness matrices

3.1 Displacement function

Fig. 4(a) shows a thin rectangular element
under the in—plane edge forces and Fig. 4(b)
shows three displacement components at a typ—

ical node " 7 ". For 12 degrees of freedom, the element

displacement function, 2y is usually assumed to have

the following form

w=A o+ A xtAy+ A+ A gyt Ay Agx?
+ A+ Ay it Ayt A xdy+ A xy?
1)

The constants, A ,, A, Ay, =+, A can be

>

expressed in terms of nodal displacement components
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(a) Element under in-plane edge force

Z(w;)
(b) Displacement component

Fig. 4 Rectangular element
and the result leads to
84

w=Lr1, fo = Full 02)=0A8 @
81,

in which {§} denotes displacement vector and [ £],

the shape function set. Shape functions are given by
(e=1/8, e=x/a, n=1y/b)

fi=el—e)(1—p(@2—e?—p’—e—1p)
fo=e(l—(1—n(l—eHa
fa=ell—e)(1—n(1—7Hb
fi=el—a(1+nQ2—e*—p*—e—1p)
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fs=e(l—a(1+n(l—e?a
fe=—e(l—a)(1+n1—7%b 3)
fr=el+ (1 +p2—e’—n’+et
fs=—e(l+(1—n(1—¢e?a
fo=—e(1+(1+n(1—7%)b
fo=el+a(1-n2—e*—n*+e—17)
fu=—e(l+a(1—n1—e?a
fr=el+e)(1—n(1-7b

3.2 Element stiffness matrices

The flexural strain energy stored in an ele—

ment with sides 24 x 24 is given by

u="3 [ [" (9 TDN hxay @

in which curvature vector, {¢} and elasticity matrix,

[D] are given by

0w
ox?
2
{¢}: 0y2
52
27
X0y

(b.a)

Et? 1 ) 0
[D]= [ ) 1 0 } (B.b)
120=09 | 0 o 0.5(1—-»)

in which p denotes Poisson’s ratio. The external

work for the element is given by

w="(0) Trto + [ [ (a) TNV addray
G)

in which rotation vector, {¢} and in-plan force set,

[N] are given by

ow
ow
ox

[N]=[f1x fx]:[qx T] (7h)
Z-y qy (2 qy

Equating the strain energy for the element to

the external work and using Eq. (2) and (3),
one obtains

[K=[k1,—dlk], ®

Table 1 Flexural stiffness matrix, [£],

60p+60p ' —42—124

H(60p+ 6+ 2441) 5480+ 16— 161) *p=(alb)* symm
a(60p™ ' +6+24p) 60ab a*(80p ' +16—164)
30p—60p~ 1 —42+ 124 H(30p— 6 —2441) a(—60p" ' —6+61) k.,
kys 5 (40p—16+164) 0 ko1 ks
_ D —ky3 —ks 3 U0 —A+Ap)  —ys sy ks

60ab | 30p—30p ' 442—12¢  B(—30p+6-61)  a(—30p " 4661 hy, kpy —kus ki

- B(20p+4—4z2)

—ky.2 b*(40p—4+44)
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—ki 3 ks 3 a4 4 —4p) —kpa— ko ks —kiy Ry ks
—60p+30p ' —42+12  B(—60p—6+61) a(—30p" ' —6+24p) kg kiy —kiy kg —hkiy —key ki

0

71@10‘3 71@11‘3 42(401771*16‘*16#) 7/@9‘,7/@9‘2 k9,3 7kﬁ,l ke‘z kG,B ks,a *ka,z ks,ai

kl],l kl],Z 7’%11,3 7k2,1 kZ‘Z

k&,l k&,Z 7k8,3 7165,1 k5,2 kﬂ.f‘l 7k2.1 kZ,Z




Table 2 Geometric stiffness matrix,

276
665 245
42a 0 1124*
— 2176 —66b —42a
—66b —24b* 0
a,tb 42a 0 —28a*
- 630q ~102 —39 —2la
39 184° 0
2la 0 —14d°
102 396 2la
—39b —18b 0
L 2la 0 564

in which flexural stiffness matrix, [£], and geo-
metric stiffness matrix, ¢ %] , are given by follow-

ing tables.
4. Elastic critical load

In the present study, the unit shear wall with
2.7mx 8. 1m is subdivided into 9 x 27

square element as shown in Fig. 2. The plane stress

sides

analysis of plate under the loading condition together
with opening and boundary conditions is performed to
determine the in—plane force set, [ N] (see Eq. 7.b),
which enables one to obtain geometric stiffness ma-—
trix for each element.

The structure stiffness matrix for the plate is
obtained by combining the element stiffness ma-
trices consecutively. The application of boun—
dary conditions to the assembled matrix leads to

([K],— ALK] {2} = {0} ©)

where A denotes the nodal displacement vector for
the whole plate. The least eigenvalue, or the critical
load factor A , can be determined by standard ei-

genvalue iteration technique, for which above equation

kl.l
kZ,l
ks
kl(i.l
kll,l
7k12,]
k7,1
kS,l
7k9,1

(%],
k2,2
_kli.Z k3.3
klO,? 7'1?10.3 kl.l
kll,Z 71611,3 71?2.1
- k12,2 klZ,R - kfi,l
k7.2 - kT‘S k4,l
k&Z 7'}38,3 7k5,l
- k.‘).Z k.‘).fi - kﬂ.l

is transformed into

kZ,Z

kR‘Z k3,3
- k4,2 - k4‘3

kﬁ,? kS,B

kﬁ,Z kﬁ.f‘l

symm.

3 kl.l
7}32,1

(LK1 K] ,— 5115} ={(0)

where [[] is the identity matrix.

Some of the critical load coefficients,

kf‘l,ﬁ

10)

k de-

Table 3 Critical load coefficients for the plate of Fig.3(a)
q¢o=Fk-D/b® (D=Et’/1200—0v?, v=0.25)

a=0.0, cutout location A
B=0.0 | B=0.05 | B=0.10 | B=0.15
Cy 884115 865017 817191 753615
Cg 6.90300 6.07464 51634 441522
C, 6.68529 5.79654 4.83741 407434
Cg 6.41745 5.64246 4.67244 3.86703
a=0.2, cutoutlocation B
A=0.0 | 8=0.05 | B=0.10 | 8=0.15
C, 8.35434 791613 7.37631 6.81705
Cs 6.68556 6.44202 5.998% 546912
C, 6.47451 6.30666 58779 5.32197
Cy 6.25761 6.20460 5.79825 5.20920
slmpxExcists] Mo M4s00s 100 113



Table 4 Critical load coefficients for plate of Fig.3(b)

qo=Fk-D/b® (D=Et’/1200—0v?, v=0.25)

a=0.0, cutoutlocation A

Table 5 Critical load coefficients for plate of Fig.3(c)
qg=Fk-D/b? (D=Et}/120—0%), v=0.25)

a=0.0, cutout location A

£=0.0 | B=0.05 | p=0.10 | B=0.15

B=0.0 | =0.05 | =0.10 | 8=0.15 C, 11.83261 12.27609 1269612 1312636
Cy 11.07954 1143738 11.80530 1218177 .

: C. 6 9.83421 10.70865 11.52081 12.20292
Cg 9.27837 10.04049 10.70109 11.14524 C; 9.106%6 10.15497 11.12841 11.89116
C; 874260 9.68670 10.51380 11.08404 Cy 8.39349 9.21969 10.05831 10.82493
Cq 8.22654 9.01089 9.78021 10.44909 a=0.2, cutoutlocation B

a=0.2, cutoutlocation B

8=0.0 | B=0.05 | 8=0.10 | B=0.15

Cy 10.99692 11.37861 1177785 12.19428
Cs 861597 9.16713 9.74079 10.32543
C; 8.20066 877167 9.29664 9.82269
Csy 797167 831069 8.599% 887355

a=0.4, cutout location C

B=0.0 | =0.05 | #=0.10 | 8=0.15

Cy 10.76841 11.14893 11.54997 11.97270
Cg 822213 868059 9.16110 9.66069
Cq 791649 8.39637 8.86869 9.32400
Cg 771939 8.224%6 860859 8.88768

£=0.0 | =0.05 | f=0.10 | p=0.15

C, 11.81358 12.24486 12.69477 13.16223
Cq 9.22329 978732 10.37619 1097946
C; 872383 9.20655 9.70857 10.22634
Cy 8.26015 852327 8.78157 9.04329

a=0.4, cutout location C

8=0.0 | B=0.05 | B=0.10 | =0.15

Cy 11.65680 12,0918 12.55833 13.04379
Cg 8.86302 9.33633 9.8229 10.31967
C, 851769 896850 9.39897 9.80946
Cg 831042 8.67987 894924 9.16164

a=0.6, cutoutlocation D

£=0.0 | p=0.05 | f=0.10 | B=0.15

a=0.6, cutoutlocation D C, 1141776 11.85048 12.3079% 12.79098
B=0.0 | p=0.05 | =0.10 | f=0.15 :
Cy 10.43847 10.79865 11.17827 11.57832 Cyg 875700 9.19035 9.64953 10.13310
Cq 8.39259 8.84%1 9.32859 9.82251
Cyg 8.18667 857214 8.98245 941769 Cyg 307763 839158 9.12402 9.64692
Cq 787365 8.28468 8.71929 9.17451
Cs 758817 Q05023 R53776 003532 foration, no horizontal shear and uniform com-

termined by repeating above procedures, are
listed in Table 3 through 5.

5. Discussion of the results

To date no literature is available to compare
the results of the present study except in the

cases of plates with C 0 and ¢= £=0.0 (No per-
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pression).

When the unloaded edges are free, the be-
havior of the plate with C, and o= $=0.0
should be similar to that of a column with simply
supported ends. In this case, the critical load intensity
per unit length of the plate will be given by

2
g.,=F ”a? . (k=1.0)




From Table 3, one can confirm that the critical load
coefficient for the case C, and g=p=0.0 is
k=28.8411/9 = 0.9823, which yields the lower
bound error, -1.8%. The loading condition for
the plate without opening can be represented
by Fig. 5 (a). The changes in critical load co-
efficient are visualized in Fig. 5 (b). It is no-
ticed that the wall (or the column) becomes
more unstable as the magnitude of lateral
shear force, Q increases.

When the plate edges are simply supported,
the stability analysis is somewhat easy. In this

case critical load coefficient, % is given

a:b

=

a F\_ freeedge ™

(a) Loading

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20]
0.10

-«
0525 ——» 467

010 020 030 040 050 060 070" P

(b) Critical load coefficient

Fig. 5 Fig. 2(a) plate with C,

(a=2.Tm, b=8.1m, m=1)

_omb  _a y2_ 100 _
k= ( P + mb) =7 =11.111

The finite element analysis(Table 4) shows
critical load coefficient, = 11.079, which is 0.28%
less than the exact value.

According to Cox's study, the critical load co—
efficient, f for the plate shown in Fig. 3(a)

_ A ay, 3 by —
k=5 L)+ (L) 24 21=12.259

The finite element analysis(Table 5) is given
by k= 11.8826 resulting in the lower bound error
of 3.07%. From the above comparisons of 3 types of
plate, one can easily guess the possibility of design
aid role of the present study.

Examinations of Table 3 through 5 reveal
that critical load coefficient change is decreas—
ing function of cutout size, which can be said
the expected results. Also the tables suggest
that the cutout part around the unloaded edges
is to be avoided when possible. One thing note
worthy, in Table 4 and 5, is the increase of
horizontal shear force, Q (increase of B) makes the
plate more stable, which may be explained with the
diagonal tensile force induced by Q.

For easy understanding of plate stability, the
changes in the critical load coefficient of Table
4 and 5, that is the coefficients for the boun-
dary conditions of Fig. 3(b) and (c), are vi-
sualized in Fig. 6, Fig. 7, Fig. 8 and Fig. 9.
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Fig. 6 Plate of Fig. 3(b), ¢=0.2
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Fig. 7 Plate of Fig. 3(b), @=0.6
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