DOI QR코드

DOI QR Code

Basic Properties of Polymer Cement Mortar with EVA Emulsion and Admixtures

EVA 에멀젼과 혼화재를 사용한 폴리머 시멘트 모르타르의 기초적 성질

  • Jo, Young-Kug (Department of Architectural Engineering, Chungwoon University)
  • Received : 2019.07.22
  • Accepted : 2019.08.20
  • Published : 2019.11.01

Abstract

The purpose of this study is to evaluate the degree of improvement in strengths by mixing blast-furnace slag and fly ash in polymer cement mortar(PCM). The test specimens are prepared with EVA polymer dispersion, two types of Admixtures (blast-furnace slag and fly ash), five kinds of polymer-cement ratios (0, 5, 10, 15 and 20%), and six kinds of admixtures (0, 3, 5, 10, 15 and 20%). Plain cement mortar is also made for comparison. From the test results, the flowing of PCM is greatly improved with the mixing of the admixtures, and strengths of PCM compared to ordinary cement mortar are also improved due to a decrease in water cement ratio. In addition, the strength characteristics of PCM by admixtures are greatly improved in flexural strength with fly ash compared to other strengths. It is apparent that the optimum mix proportions with polymer-cement ratio of 10% or more, admixture contents 5 to 10% of flay ash for flexural strength improvement of EVA-cement mortar are recommended in this study.

이산화탄소 농도가 높은 도심지의 경우 탄산화로 인한 철근부식이 발생하기 쉬우며 이는 콘크리트 구조물의 내구수명을 감소시킨다. 콘크리트 구조물의 경우 다양한 구속조건을 가지며 항상 외부의 재하하중을 받고 있다. 도입된 응력수준은 이산화탄소와 같은 유해인자의 확산을 변화시키며 탄산화 깊이의 변동성을 야기한다. 본 연구에서는 응력재하수준에 따른 탄산화 변동성을 정량화하였으며, 이를 이용하여 탄산화 예측식을 도출하였다. 내구성 설계인자인 피복두께, 이산화탄소 확산계수, 탄산화 반응 수화물, 그리고 외부 이산화탄소 농도를 확률변수로 정의하였으며, MCS을 통하여 영향인자의 변동성에 따른 내구수명을 도출하였다. 또한 응력수준에 따라 변화하는 내구수명을 도출하였으며, 이를 결정론적인 방법의 결과와 비교하였다. 피복두께 및 내부 수화물 생성이 내구수명 변동성에 가장 큰 영향을 미쳤으며, 응력수준을 고려한 내구수명평가는 유지관리 우선순위 설정에 합리적으로 적용할 수 있다.

Keywords

References

  1. Ohama, Y. (1978), Development of concrete-polymer materials in Japan, Proceedings of the Second International Congress, on Polymer in Concrete, The University of Texas at Austin, Austin, USA, 121-137.
  2. Murata, J., and Kobayashi, K. (1967), Water-resistance and ant-corrosive treatments of concrete with resin impregnation, Cement and Concrete, 250, 17-22.
  3. Ohama, Y. (1998), Use of polymers for improvements in durability of reinforced concrete structures and their repairing works, Journal of Adhesion Society Japan, 24(8), 313-322.
  4. Piotrowski, T., Prochon, P., and Capuana, A. (2018), Mechanical properties of polymer cement-fiber-reinforced concrete (PC- FRC): comparison based on experimental studies, Proceedings of the 16th International Congress on Polymers in Concrete, Washington DC, USA, 227-234.
  5. Ohama Y. (1995), Handbook of polymer-modified concrete and mortars, Properties and Process Technology, Noyes Publications, New Jersey, USA, 11-16, 45-148.
  6. Jo, Y.K. (2009), Adhesion in tension of cement mortar to cement concrete substrates coated with polymer cement slurry, Journal of the Architectural Institute of Korea,25(6), 123-130.
  7. Sawaide, M. (1990), Improved construction joint work of early-age concrete by polymer-emulsion treatments, Proceedings of the 6th International Congress on Polymers in Concrete, Shanghai, China, 562-568.
  8. Heede, V.D. (2017), Screening of different encapsulated polymer-based healing agent for chloride exposed self-healing concrete using chloride migration tests, Proceedings of International conference on non-traditional cement and concrete, Brno, 1-7.
  9. Kim, MJ., Shin, GO., Joo, NC.,Lee, GJ., and Jeong, JP. (2016), Vibration properties of concrete overlays using RS-LMC, Journal of the Korea concrete Institute, 28(5), 571-579. https://doi.org/10.4334/JKCI.2016.28.5.571
  10. Choi, KK. (2010), Numerical investigation on cracking of bridge desk slabs with latex modified concrete overlays, 22(1), 77-84. https://doi.org/10.4334/JKCI.2010.22.1.077
  11. Yoon, YS., Cho, SJ., and Kwon, SJ. (2019), Prediction equation for chloride diffusion in concrete containing GGBFS based on 2-Year cured results, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(2), 1-9.
  12. Garbacz, A., and Sokolowska, J.J. (2012), Concrete-like polymer composites with fly ashes-Comparative study, Construction Building Materials, 38, 689-699. https://doi.org/10.1016/j.conbuildmat.2012.08.052
  13. Jo, YK. (2008), basic properties of hybrid-tyoe polymer cement slurry for the anti-corrosion of steel, Journal of the Architectural Institute of Korea, 24(9), 89-96.
  14. KS F 2476, Standard test method for polymer-modified cement mortar, Korean Agency for Technology and Standards, 2017.

Cited by

  1. 폴리머 디스퍼전 SBR과 고로슬래그 미분말 및 플라이애시를 사용한 폴리머 시멘트 모르타르의 기초적 성질에 관한 연구 vol.21, pp.1, 2019, https://doi.org/10.5345/jkibc.2021.21.1.001