• Title/Summary/Keyword: 철근의 영향

Search Result 942, Processing Time 0.026 seconds

FEA Simulations on Water Absorption in Various Pre-Cracked Concretes (유한요소해석에 기반한 콘크리트 균열 조건에 따른 수분흡수 현상 분석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.68-75
    • /
    • 2021
  • This study performed simulating water absorption in various pre-cracked concretes. 2D-Finite Element Analysis (2D-FEA) model was developed based on experimental results on the amount of absorbed water in concrete with the exposure time. Results from the 2D-FEA showed that both crack width and crack depth strongly affect the amount of absorbed water in cracked concrete. In addition, water absorption rate is introduced and a predictive equation is suggested to estimate the rate in order to quantify the amount of absorbed water in cracked concrete. It was confirmed that water absorption in concrete having less than 150 mm crack depth was dominated as a main transport factor regardless of crack width. Therefore, considering that steel corrosion caused by chlorides dissolved in water mainly occurs in reinforced concrete structures, it is necessary that crack depth as well as crack width should be investigated in reinforced concrete structures at the time of field-inspection.

Productivity Analysis of Reinforced Concrete Works and Tower Crane Working Ratio for High-rise Apartment Buildings (초고층 공동주택 RC 공사의 생산성 및 타워크레인 가동율 분석)

  • Kwon, Jihun;Huh, Youngki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • The productivity of rebar-work and form-work was analyzed with data collected from an actual high-rise construction project, and the actual utilization rates of three tower cranes were also investigated. It was found that the average productivity of the form-work increased from 12.00~8.71(㎡/man·day) in the underground and above-ground/lower-floor to 11.94~20.73(㎡/man·day) in the standard floor. Comparing the productivity of core area to outer, the former was found to be about 11% higher. Moreover, the rebar-work productivity of the outer area(1.12 ton/man·day) was approximately 9.6% higher than that of the core area for the standard floor. The average utilization rates of three TC were surveyed to be about 63.49%, and it was revealed that rainy weather(6.1%), strong winds(6.1%), holidays(17.8%), TC lifting work(5.8%), and other failures and repairs(0.07%) were the causes of non-operation. These research results are expected to be beneficial data in planning and managing the process of high-rise RC construction works in the future.

An Experimental study on the Structural Performance by the Depth Variation of Capacity of U-shaped composite Beam (U-형 복합보의 춤 변화에 따른 구조성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2020
  • The U-shaped composite beam used in this study consist of a reinforced concrete structure, a beam steel structure supporting the slab, a reinforced concrete structure, and a U-shaped steel plate. The U-shaped composite beam was developed for the purpose of using it as a parking lot because it is highly constructible and has low floor height and long span. For the improvement of constructivity, the U-shaped composite beam ends are planned with standardized H-shaped steel and connected directly to the columns, and the middle of the U-shaped composite beam consists of U-shaped steel plates folded in U-shaped form using thin steel plates (t=6) instead of H-shaped steel. In the middle of the composite beam, where U-shaped steel plates are located, the depth of U-shaped beam may be planned to be small so as to satisfy the height limit of the parking lot. It is important to grasp the structural performance according to the change of depth because low beam depth is advantageous for the reduction of the floor height, but it is a inhibitor to the structural behaviors of U-shaped composite beam. In addition, since U-shaped composite beams are a mixture of steel frame structures, reinforced concrete structures and U-shaped steel plates, securing unity has a great influence on securing structural performance. Therefore, in this study, a structural experiment was conducted to understand the structural performance according to the depth change for U-shaped composite beam. A total of three specimens were planned, including two specimens that changed the depth using a criteria specimen planned for a general parking lot. The results of the experiment showed that the specimens who planned the depth greatly had better structural performance such as yield strength, maximum strength, and energy than the standard specimen.

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

Monitoring the Structural Behavior of Reinforced RC Slabs Using Optical Fiber-embedded CFRP Sheets (광섬유 매립 CFRP 시트를 활용한 RC 슬래브의 구조적 거동 모니터링 기술 개발)

  • Kim, Jaehwan;Jung, Kyu-San;Kim, Byeong-Cheol;Kim, Kun-Soo;Park, Ki-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.311-322
    • /
    • 2022
  • This study performed 4-point flexural tests of reinforced concrete to which was attached a distributed optical fiber sheet and carbon fiber reinforced polymer (CFRP) sheets in order to assess the effect of the CFRP sheets and the applicability of a BOTDR sensor simultaneously. To evaluate the reinforcing effect, various degrees of CFRP sheet attachment were manufactured, and to evaluate the sensing ability, strains obtained from a BOTDR sensor were compared with strains measured from electric resistance strain gauges that were attached to the concrete surface. From the results, the reinforcing effects were evidently different according to the attachment type of the CFRP sheets, and it was confirmed that the main influencing factor on the reinforcing effect was the type of attachment rather than the attachment area. The reinforced concrete structural behavior was visualized with strains measured from the BOTDR sensor as load increased, and it was identified that load was concentrated in the CFRP reinforced area. Strains from the BOTDR sensor were similar to those from the electric resistance strain gauge; thereby a BOTDR sensor can be effective in the analysis of structural behaviorsof massive infrastructure. Finally, the strain from a BOTDR sensor was high where CFRP sheet fall-off occurs, and it would therefore be efficient to track local damage locations of CFRP sheets by utilizing a BOTDR sensor.

Validity Evaluation of Effective Strength of Concrete Strut using Strut-Tie Model Analysis of Structural Concrete (콘크리트 구조부재의 스트럿-타이 모델 해석을 통한 스트럿 유효강도의 적합성 평가)

  • Jeun, Chang Hyun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.443-462
    • /
    • 2010
  • The strut-tie model approach has proven to be effective in the ultimate analysis and design of structural concrete with disturbed regions. For the reliable analysis and design by the approach, however, the effective strength of concrete struts must be determined accurately. In this study, the validity of the effective strength of concrete struts, presented by the several design codes and many researchers including the author, was examined through the ultimate strength analysis of 24 reinforced concrete panels, 275 reinforced concrete deep beams, and 218 reinforced concrete corbels by using the conventional linear strut-tie model approach of current codes. The present study shows that the author's approach, resulting in an accurate and consistent evaluation of the ultimate strength of the panels, deep beams, and corbels, may reflect rationally the effects of primary variables including the types of strut-tie model and structural concrete, the conditions of load and geometry, and the strength of concrete in the strut-tie model analysis and design of structural concrete.

A Study on the Optimal Limit State Design of Reinforced Concrete Flat Slab-Column Structures (한계상태설계법(限界狀態設計法)에 의한 철근(鐵筋)콘크리트 플래트 슬라브형(型) 구조체(構造體)의 최적화(最適化)에 관한 연구(研究))

  • Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.11-26
    • /
    • 1984
  • The aim of this study is to establish a synthetical optimal method that simultaneously analyze and design reinforced concrete flat slab-column structures involving multi-constraints and multi-design variables. The variables adopted in this mathematical models consist of design variables including sectional sizes and steel areas of frames, and analysis variable of the ratio of bending moment redistribution. The cost function is taken as the objective function in the formulation of optimal problems. A number of constraint equations, involving the ultimate limit state and the serviceability limit state, is derived in accordance with BSI CP110 requirements on the basis of limit state design theory. Both objective function and constraint equations derived from design variables and an analysis variable generally become high degree nonlinear problems. Using SLP as an analytical method of nonlinear optimal problems, an optimal algorithm is developed so as to analyze and design the structures considered in this study. The developed algorithm is directly applied to a few reinforced concrete flat slab-column structures to assure the validity of it and the possibility of optimization From the research it is found that the algorithm developed in this study is applicable to the optimization of reinforced concrete flat slab column structures and it converges to a optimal solution with 4 to 6 iterations regardless of initial variables. The result shows that an economical design can be possible when compared with conventional designs. It is also found that considering the ratio of bending moment redistribution as a variable is reasonable. It has a great effect on the composition of optimal sections and the economy of structures.

  • PDF

Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet (폭발 손상을 입은 강섬유 및 FRP 시트 보강 철근콘크리트 보의 국부손상 및 잔류성능 평가)

  • Lee, Jin-Young;Jang, Dae-Sung;Kwon, Ki-Yeon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.627-634
    • /
    • 2014
  • In this study, standoff detonation tests and static beam tests on $160{\times}290{\times}2200mm$ RC beams were conducted to investigate the effect of local damage on the flexural strength and ductility index. And also, blast resistance of RC beams strengthened with steel fiber and FRP sheet were evaluated by these tests. The standoff detonation tests were performed with charge weight of 1kg and standoff distance of 0.1m. After the tests, crater diameters and loss weights of specimens were measured to evaluate the local damage of specimens. Flexural strength and ductility index were measured by conducting the static beam tests on the damaged and undamaged specimens. As a test results, normal concrete specimen(NC) showed relatively large crater and spall diameters that caused weight loss of 23.5kg as a local damage. Whereas, steel fiber reinforced concrete specimen(SFRC) and FRP sheet retrofitted specimens(NC-F, NC-FS) showed higher blast resistance than NC by reducing crater size and weight loss. Flexural strength and ductility index were decreased in case of local damaged specimens by detonation. Especially, large decrease of flexural strength was shown in NC as compared with intact specimen and brittle failure was occurred due to buckling of compressive reinforcement. In case of specimens strengthened with steel fiber and FRP sheet, residual flexural strength and ductility index were increased as compared with NC. In these results, it is concluded that critical local damage can be occurred unless enough standoff distance can be assured even if the charge weight is small. and it is verified that strengthening method using steel fiber and FRP sheet can increase blast resistance.

An Experimental Study on Creep and Shrinkage of High -Strength Concrete Member (고강도콘크리트의 부재의 크리프 및 건조수축특성에 관한 실험적 연구)

  • 오병환;엄주용;유승운;차수원;김종한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.135-139
    • /
    • 1992
  • 콘크리트가 구조용 재료로써 활용되기 시작한 이래 크리프와 건조수축의 특성규명을 위한 연구는 많은 연구자들에 의해 수행되어 왔다. 그러나 그 거동은 아직도 명확히 규명된 것은 아니며 이는 고강도 콘크리트의 경우 더욱 그러하다. 따라서 본 연구는 현재 국내에서 그 사용이 늘어나고 있는 고강도 콘크리트의 크리프 및 건조수축특성에 대한 기본적인 자료를 제공하기 위해 수행되었다. 본 연구의 주된 변수는 고강도 콘크리트, 배근유무, 철근비, 건조조건, 재하재령 등이며 이들의 영향에 대한 크리크 및 건조수축특성을 규명하였다. 이것은 앞으로 고강도콘크리트구조물 설계에 중요한 자료가 될 것으로 사료된다.

  • PDF

A Study on the Anchorage Local Stress characteristics of Precast of Precast Prestressed Concrete Beams (프리캐스트 프리스트레스트 콘크리트 부재의 정착부 국부응력 특성에 관한 실험연구)

  • 오병환;임동환;양인환;박상현;장석훈;유승운;김종한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.224-227
    • /
    • 1992
  • 세그멘탈 교량에 포스트 텐셔닝 힘을 도입할 때 발생하는 가장 큰 문제는 균열의 발생이다. 이러한 균열은 실제 구조물의 강도감소 뿐 아니라, 이 균열은 염분 및 수분 침투의 통로가 되어, 부식 및 동결손상의 주원인이 되어 구조안전도에 큰 문제를 유발한다. 본 연구는 국부 집중 하중을 받는 프리스트레스 정착부의 응력분포 특성을 규명하고, 국부집중응력으로 인한 균열 발생 요인을 규명하여, 균열발생방지방안 및 그 대책을 강구함에 그 근본 목적이 있다. 이를 위하여 텐던에 대한 형상, 국부보강방식, 단일 및 복수텐던의 영향, 구조보강 철근량에 따른 콘크리트 내부 변형도 및 균열양상을 도출하기 위해, 부재를 제작하여 실험을 실시하여 균열의 양상 및 균열발생원인을 조사하고, 그 구체적 보강방안을 찾고자 한다.

  • PDF