• Title/Summary/Keyword: 천해파랑모델

Search Result 28, Processing Time 0.025 seconds

조류에 의한 천해 파랑 스펙트럼 변환의 수치실험 및 서해 연안에서 동시 현장 파랑 관측 자료의 분석

  • 이동영;김유인;송태관
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.90-90
    • /
    • 1992
  • 원해에서 파랑이 천해로 진행할 때 수심의 변화와 마찬가지로 조류에 의해서도 파랑 스펙트럼이 변환된다. 조류에 의해 파랑 스펙트럼의 변환을 정확히 추정하는 수치 모델의 개발은 우리나라 서해안과 같이 조류가 큰 해안에서 해상상태의 추정에 중요한 과제이다.(중략)

  • PDF

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined model for the case of Typhoon Maemi (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-90
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable from deep to shallow water. The dynamically coupled model consists of hydrodynamic module and wind wave module. The hydrodynamic module is modified from POM and wind wave module is modified from WAM to be applicable from deep to shallow water. Hydrodynamic module computes tidal currents, sea surface elevations and storm surges and provide these information to wind wave module. Wind wave mudule computes wind waves and provides computed information such as radiation stress, sea surface roughness and shear stress due to winds. The newly developed model was applied to compute the surge, tide and wave fields by typhoon Maemi. Verification of model performance was made by comparison of measured waves and tide data with simulated results.

Shallow Water Wave Hindcasting by the Combination of MASCON and SWAN Models (지형을 고려한 해상풍 모델(MASCON)과 SWAN 모델의 결합에 의한 천해파랑 산정)

  • Kim, Ji-Min;Kim, Chang-Hoon;Kim, Do-Sam;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Shallow water waves are hindcasted from sea wind fields, which include wave transformations such as shoaling, refraction, diffraction, reflection and wave breaking. In case of estimating sea wind field in shallow water, the sea wind revised from free wind obtained by the typhoon model is widely used. However, this method is not able to consider the effect of land topography on the wind field, which will be important factor for shallow water wave forecasting and hindcasting. In this study, therefore, the effect of land topography on sea wind field in shallow water is investigated for shallow water wave forecasting and hindcasting with high accuracy. The 3-D MASCON model is introduced to consider the influence of land topography on the wind field. And, for two areas divided by the topographical characteristics, i.e. shielded and opened coastal areas, sea wind field is examined by comparison between initial wind field by typhoon model and modified wind field by 3-D MASCON model. Finally, applying these sea wind fields to SWAN model, the results of shallow water wave calculated in shielded and opened coastal areas are compared, and, also, the effect of MASCON model on shallow water wave forecasting and hindcasting is discussed.

Derivation of Nonlinear Model for Irregular Waves on Miled Slpoe (비선형 불규칙 완경사 파랑 모델의 유도)

  • 이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.281-289
    • /
    • 1994
  • An equation set of nonlinear model for regular/irregular waves presented in this study can be applied to waves travelling from deep water to shallow water, which is different from the Boussinesq equations. The presented equations completely satisfy the linear dispersion relationship and when expanded, they are proven to be consistent with the Boussinesq equation of several types. In addition, the position of averaged velocity below the still water level is estimated based on the linear wave theory.

  • PDF

Parabolic Approximation Model for Wave Deformation Prediction in the Shallow Water (천해파랑 변형예측을 위한 포물형 근사 모델)

  • 이동수;김숭경
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.84-89
    • /
    • 1992
  • 파랑변형 예측모델로서는 타원형 편미분 방정식 형태인 완경사 방정식(Berkhoff, 1972)이 있으며 이는 파랑의 굴절, 회절, 반사등의 변형을 재현할 수 있으나 수치해석상 어려운점이 있으며 많은 기억용량과 계산시간이 소요되어 일반적이지 못한 단점이 있다.(중략)

  • PDF

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model Applicable to Shallow Water 1. Validation of the Hydrodynamic Part of the Model (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 1. 해수유동 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.63-78
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable to shallow water. The newly developed model is based on both POM (Princeton Ocean Model) for the surge and tide and WAM (WAve Model) for wind-generated waves, but is modified to be applicable to shallow water. In this paper which is the first paper of the two in a sequence, we verified the accuracy and numerical stability of the hydrodynamic part of the model which is responsible for the simulation of Typhoon generated surge and tide. In order to improve the accuracy and numerical stability of the combined model, we modified algorithms responsible for turbulent modeling as well as vertical velocity computation routine of POM. Verification of the model performance had been conducted by comparing numerical simulation results with analytic solutions as well as data obtained from field measurement. The modified POM is shown to be more accurate and numerically stable compare to the existing POM.

Study on Development of Surge-Tide-Wave Coupling Numerical Model for Storm Surge Prediction (해일-조석-파랑을 결합한 폭풍해일 수치모델 개발에 관한 연구)

  • Park, Jong-Kil;Kim, Myung-Kyu;Kim, Dong-Cheol;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.33-44
    • /
    • 2013
  • IIn this study, a wave-surge-tide coupling numerical model was developed to consider nonlinear interaction. Then, this model was applied and calculations were made for a storm surge on the southeast coast. The southeast coast was damaged by typhoon "Maemi" in 2003. In this study, we used a nearshore wind wave model called SWAN (Simulating WAves Nearshore). In addition, the Meyer model was used for the typhoon model, along with an ocean circulation model called POM (Princeton Ocean Model). The wave-surge-tide coupling numerical model could calculate exact parameters when each model was changed to consider the nonlinear interaction.

Wave Transformation Model in the Parabolic Approximation (포물형 근사식에 의한 천해파 산정모델)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.3
    • /
    • pp.134-142
    • /
    • 1990
  • A wide-angle approximation in the parabolic equation method is presented to calculate wave transformation in the shallow water. The parabolic approximation to the mild-slope equation is obtain-ed by the use of a splitting matrix, which leads to a generalized equation in form. A numerical model based on a finite difference scheme is presented and computational results are provided to test the model against the laboratory measurements of circular and elliptical shoals. The numerical results are in good agreement with most of experimental data. Therefore it can be concluded that the model shows greater capability to reproduce the characteristics of waves in the refractive focus.

  • PDF

Tidal Variation of Waves in Kyung-Gi Bay (경기만 조석조건에서의 파랑변이)

  • 김지웅
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.87-95
    • /
    • 2000
  • Spectral wave models are applied to the area of Kyung-gi bay with two different combinations. One combination assumes a constant tidal elevation over the whole region when applying the wave model to the area. In this case no tidal currents exist in any place. The other combination employs tide model as well as wave model so that tidal condition is defined at every computation time when wave modelling is carried out. Significant wave heights and wave directions are shown for these two cases. With these two different constraints of tidal variation, the results are checked and compared with each other. Both results are found significantly different from each other.

  • PDF

파ㆍ흐름 공존장 수치모델의 적용성

  • 이창호;김헌태;류청로;이인철
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.166-167
    • /
    • 2003
  • 파랑ㆍ흐름의 공존장에서 그 간섭작용은 Tidal inlet 와 하구부근와 같은 천해영역에서 중요한 물리적 현상이다. 이러한 파ㆍ흐름간섭현상은 파랑의 파고, 스펙트럼과 파향등을 현저하게 변화시키고, 하구와 inlet부근에 출현하는 사주(砂洲)등의 발생기구 및 해빈 안정화에 관계하는 중요한 요인이기 때문에 이에 대한 적절한 해석이 필요하다. 본 보고에서는 확장형 부시네스크방정식을 토대로 한 수치모델을 통하여 파ㆍ흐름 공존장에서의 적용성을 검토하고자 한다. (중략)

  • PDF