• Title/Summary/Keyword: 천체관측

Search Result 247, Processing Time 0.022 seconds

Development and Test Result of Fast Digital Conversion System with Variable Sampling Frequencies for Astronomical Radio Siginal Processing (우주 전파 신호 처리용 가변 샘플링 고속 디지털 변환 장치 개발)

  • Kang, Yong-Woo;Song, Min-Gyu;Kim, Hyo-Ryoung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1175-1182
    • /
    • 2021
  • The receiver of each radio telescope of KVN, has a sampler that converts astronomical radio signal to digital data. The ability of this sampler (the bandwidth, sampling frequency, and sampling bits) is improved by sqrt(n), if the bandwidth is increased by n times, and the number of observable objects increases exponentially in the case of continum spectrum radio sources. As the bandwidth increases, there are the more spectrum lines that can be simultaneously monitored in the radio source. This will greatly expand the research area in astronomical radio observation. For this reason, we are trying to independently develop the technology of the fast digital sampler. Therefore, based on the research experience and technology accumulated so far, An ability of sampling up to 3.5 GHz, that can vary the sampling frequency and can observe in a wider band, was designed and made for proto-type. In this study, we introduce the development details and test results for new sampling system.

A Study on the Test Results of 32 Gbps Observing System for Wideband VLBI Observation (광대역 VLBI 관측을 위한 32Gbps 관측장비의 시험결과 고찰)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Jung, Dong-Kyu;Harada, Kenichi;Takezawa, Kosuke
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2017
  • In this paper, we evaluate the basic test results of the 32 Gbps observational equipment introduced as the back-end system for the wideband VLBI (Very Long Baseline Interferometry) observation of KVN (Korean VLBI Network). Radio astronomers want to make a large radio telescope that has excellent performance in order to observe the superfine structure of a celestial body, but a lot of money is needed. Therefore, in order to increase the sensitivity, the performance improvement of the receiving system and the method of observing the wide frequency bandwidth are introduced. To do this, we adopted a wideband sampling method for converting analog signals to digital with ultra-fast speeds and a wideband sampler for performing digital filtering in order to observe a wide observational frequency bandwidth. The wideband sampler (OCTAD-K) supports up to 16 Gsps-2bits sampling and supports a variety of observational bandwidth using digital filtering techniques. In particular, it is designed to support KVN's 4-frequency simultaneous observation system and VERA(VLBI Exploration of Radio Astrometry)'s 2-beam observation system. It can also support polKVN(Korean VLBI Network), KaVA(KVN and VERA Array), 32Gbps Direct Sampler, Digital Filter, Widebandarization observations and supports the standard VDIF(VLBI Data Interchange Format) format of observed data. In this paper, the performance of the system and the problem solving are described in detail after performing the factory inspection and field test before the system is introduced.

  • PDF

A PERIOD STUDY OF THE NEAR CONTACT BINARY EG CEP (근접촉쌍성 EG Cep의 공전주기 연구)

  • Kim Chun-Hwey;Jeong Jang-Hae;Lee Yong-Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.105-116
    • /
    • 2006
  • New eight times of minimum light of the near-contact binary EG Cep were presented. All times of minimum light for EG Cep, including ours, were collected and analyzed to study it's orbital period variation. It was found that the orbital period have varied in a cyclical way superposed on an upward parabola. A secular period increase of $3.22{\times}10^{-8}d/y$ was calculated. Under the assumption of a conservative mass transfer, it implied that the stellar gaseous material of about $3.18{\times}10^{-8}M_{\odot}$ /year is transferring from the less massive secondary component to the primary. The cyclical period variation was interpreted as light-time effect due to an unseen third body in the system. The resultant period, semi-amplitude and eccentricity of the light time orbit were calculated to be $38.^y4,\;0.^d0034$ and 0.29, respectively. The mass range of the tertiary proposed in the system is deduced to be quite small as $0.10M_{\odot}{\leq}M_3{\leq}0.21M_{\odot}$ for $i_3{\geq}30^{\circ}$.

A Study on the Test Results and Wideband Observing of the Korean VLBI Network (KVN의 광대역 관측 시험 및 결과고찰)

  • Oh, Se-Jin;Oyama, Tomoaki;Yeom, Jae-Hwan;Nishikawa, Takashi;Roh, Duk-Gyoo;Kim, Seung-Rae;Lee, Eui-Gyeom;Je, Do-Heung;Byun, Do-Young;Lee, Seong-Mo;Chung, Hyun-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.2
    • /
    • pp.83-92
    • /
    • 2016
  • In this paper, we introduce the results of the testing and observation systems for performance wideband expansion in the Korean VLBI Network(KVN). The KVN performs VLBI observations to 1024 Mbps data rate, and 8192 Mbps observing for four simultaneous observation is now evaluating for normal operation. The VLBI stations in several world countries developed their own wideband observing systems to observe the celestial objects with high precision and high resolution or are working with several countries. The KVN is planning to introduce a high-speed sampler, OCTAD, for sampling directly up to 2048 MHz bandwidth for RF signal of K/Q/W/D band in the frequency band without conversion. Therefore, as a preliminary study for the performance scalability of the KVN then through the close cooperation with National Astronomical Observatory of Japan (NAOJ), the OCTAD high-speed sampler and OCTADISK2 high-speed recorder were installed in the KVN Yonsei station, and verify the performance through a wideband.

Pointing Accuracy Establishment and Efficiency Measurement of 13.7m Antenna for Observing Cosmic Radio Wave (13.7m 우주전파 관측용 안테나의 지향정도 확립과 효율 측정)

  • Cho, Se-Hyung;Jung, Jae-Hoon;Lee, Young-Ung;Kim, Hyun-Goo;Roh, Duk-Gyoo;Park, Yong-Sun;Kim, Bong-Gyu;Auh, Byung-Ryul;Lee, Chang-Hoon;Yim, In-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.18-28
    • /
    • 1989
  • In this paper, we describe a pointing accuracy establishment and efficiency measurement of 13.7 m antenna for observing cosmic radio wave which is in the first stage just after finishing its installation. The initial stage of pointing model, 1 and 2 were set up with the observational data of Sun and Moon which are large in visual diameter and also strong in radio intensity. Based on this model, model 3 and 4 were established within the available operational range, i.e., 3.8" in azimuth deviation, 10.5" in elevation deviation, with the observational data of SiO maser source which is a point source and distributed in overall sky. Both apeture efficiency anhd beam efficiency were measured by observing Venus whose brightness temperature is well-known. The resulting corrected efficiencies were 35% and 50% respectively.

  • PDF

Development of the Cloud Monitoring Program using Machine Learning-based Python Module from the MAAO All-sky Camera Images (기계학습 기반의 파이썬 모듈을 이용한 밀양아리랑우주천문대 전천 영상의 운량 모니터링 프로그램 개발)

  • Gu Lim;Dohyeong Kim;Donghyun Kim;Keun-Hong Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.111-120
    • /
    • 2024
  • Cloud coverage is a key factor in determining whether to proceed with observations. In the past, human judgment played an important role in weather evaluation for observations. However, the development of remote and robotic observation has diminished the role of human judgment. Moreover, it is not easy to evaluate weather conditions automatically because of the diverse cloud shapes and their rapid movement. In this paper, we present the development of a cloud monitoring program by applying a machine learning-based Python module "cloudynight" on all-sky camera images obtained at Miryang Arirang Astronomical Observatory (MAAO). The machine learning model was built by training 39,996 subregions divided from 1,212 images with altitude/azimuth angles and extracting 16 feature spaces. For our training model, the F1-score from the validation samples was 0.97, indicating good performance in identifying clouds in the all-sky image. As a result, this program calculates "Cloudiness" as the ratio of the number of total subregions to the number of subregions predicted to be covered by clouds. In the robotic observation, we set a policy that allows the telescope system to halt the observation when the "Cloudiness" exceeds 0.6 during the last 30 minutes. Following this policy, we found that there were no improper halts in the telescope system due to incorrect program decisions. We expect that robotic observation with the 0.7 m telescope at MAAO can be successfully operated using the cloud monitoring program.

Design and installation of Sundials for Youth (청소년 교육을 위한 다양한 해시계의 제작 및 설치 계획)

  • Shin, Yong-Cheol;Lee, Yong-Bok;Lee, Sang-Gak;Kang, Wonseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.87.2-87.2
    • /
    • 2015
  • 국립고흥청소년우주체험센터에서는 1m 반사 망원경의 완성을 눈앞에 두고 있다. 천체 망원경으로 관측을 하기 위해서는 시간과 천구 좌표계의 이해는 필수적이다. 하지만 현재 본 센터에서는 천구의를 활용한 프로그램 이외에는 시간과 좌표계를 다루는 체험 프로그램이 전무한 실정이다. 센터에서는 참가자가 자신의 그림자로 시각을 알 수 있는 지평면 해시계, 센터에서 쓰지 않고 있는 구형 가마솥을 재활용한 앙부일구, 덕흥 천문대 교육동의 벽에 벽면 해시계의 제작 및 설치를 추진하고 있다. 차후 이를 활용한 체험 프로그램을 참가자에게 제공한다면 태양의 겉보기 운동을 통해 시간과 공간에 대한 개념을 쉽게 알려줄 수 있을 뿐만 아니라 우리 민족의 과학적 자긍심을 심어줄 수 있을 것으로 기대한다.

  • PDF

천체 망원경의 자동화 : I. 컴퓨터 제어와 자동 관측을 위한 기본 설계 및 하드웨어의 제작

  • Gang, Yong-U;Lee, Hyeong-Mok;Yun, Gap-Su
    • Publications of The Korean Astronomical Society
    • /
    • v.6 no.1
    • /
    • pp.62-75
    • /
    • 1991
  • The small sized telescope can be best used if the control and observation can be made remotely and fully automatically by the aid of computers. We discuss the possible ways of automating the existing telescopes of various designs using personal computers. 'We have specifically designed the parts necessary to automate 16 inch Cassegrain Telescope at Pusan University Observatory. The degree of automation we have set for the present work is the interactive. remote observation including opening and shutting down of dome slit. The observational modes we have in mind are photoelectric photometry and CCD imaging. The basic components of the hardware are interface card for 16 or 32 bit IBM PC family of computers, relay switches for the control of telescope movements, stepping motor controller card for the control of observational equipments, and AID converter unit that accepts signal from sensors for the environment conditions such as temperature, wind speeds, precipitation, etc. We also have designed and built a photoelectric photometer that can be fully controlled by the command of a computer. Such observational equipment is also essential in order that the remote observation can be realized.

  • PDF

X-선 검출기의 이득 보정 및 신호처리회로 구성

  • 남욱원;최철성;문신행
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.04a
    • /
    • pp.22-22
    • /
    • 1993
  • 천체 B-선 관측용으로 많이 이용되고 있는 X-선 비례계수관을 실험실형으로 재작하고 그 특성을 조사하였다. X-선 검출기의 구조는 10 $\times$ 20 $\times$ 2cm3 인 검출체적내에 10개의 전극선이 설치되어있는 다중선 비례계수관이며, 검출가스로서 Argon(90%) + CH4 (10%)인 g혼합가스를 사용하였다. 이러한 구조에서 5.9 keV에 대한 에너지 분해능은 16%를 얻었으나, 정상적인 전극연결방법에서는 검출기 끝측에 위치한 전극에서 생기는 electric field 변형매문에, 양극선 배열방향에서 조정된 이득의 군일성이 나쁘게 나타났다. 따라서 다중선들의 각 전극선에 전압보상법(voltage compansation method)을 적용하여 검출기 전반에 걸친 이득의 균일성을 2 % (rms 값) 이내로 보정할 수 있었다. 아울러 신호처리회로 중 에너지분석을 위한 파고분석기, 비 X-선 재거를 위한 상승시간선별기(rise-time discriminator)등을 제작하였으며 이들을 이용한 전반적인 신호처리회로의 구성에 대하여 논하고자 한다.

  • PDF

DEVELOPMENT OF CCD CAMERA FOR OBSERVING WIDE FIELDS (천체의 광역 관측을 위한 CCD 카메라 개발)

  • YU YOUNG SAM;PAK SOOJONG;KIM MINJIN;LEE SUNGHO;BYUN YONG-IK;CHUN MOO-YOUNG;HAN WONYONG
    • Publications of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • We developed a CCD camera that can observe wide fields on the sky. We tested the field of views using various lenses. For cooling the CCD chip, we used a thermoelectric cooling device and tested the cooling efficiency. This camera will continuously observe a part of the sky. The data from the camera will be used to decide the current weather condition by the real-time star counting program (SCount) which will be developed later.

  • PDF