천이신호는 지속시간이 짧으면서 길이의 변화가 크고, 시변성 및 비정재성 특성을 갖는다. 이러한 천이신호의 식별에는 분석 프레임 단위로 참조신호에 대한 기준패턴을 만들어 입력신호와의 유사도를 비교하는 방법이 효과적일 수 있다. 본 연구에서는 참조신호의 기준패턴으로 프레임 기반의 특징벡터들에 대해 확률통계 모형인 정규혼합모델을 적용하는 방법을 제안하고, 다양한 수중 천이신호에 대한 식별 실험을 통해 제안한 방법의 타당성을 검증하였다.
프레임 단위로 식별 데이터베이스에 저장된 참조 신호의 특징 벡터와 유사성을 비교하여 입력 신호를 식별하는 경우에, 참조 신호의 특징 벡터로 데이터베이스를 어떻게 구성하는가에 따라 식별 성능은 영향을 받을 수 있다. 즉, 식별 데이터베이스의 구성 방법에 따라 데이터베이스의 크기와 식별을 위한 계산량, 식별 성능 등이 결정되며, 이것은 실제로 수중 천이신호 식별 시스템을 구성할 때 중요한 문제이다. 본 논문에서는 LBG 벡터 양자화 기법을 이용하여 식별 데이터베이스의 크기를 줄여 줌으로써 프레임 기반 수중 천이신호 식별 기법의 효율성을 증가시킬 수 있는 방법을 제안하고, 실험을 통하여 제안한 방법의 타당성을 검증하였다.
본 논문에서는 실제 수중 환경에서 선박 또는 잠수함으로부터 발생하는 인위적인 천이신호와 돌고래, 새우 등의 해양 생물로부터 발생하는 천이신호들을 식별하기 위한 특징벡터 추출 기법을 제안하였다. MFCC와 엔트로피 기반의 웨이블릿 패킷 기법을 이용하여 특징을 추출하고, 이 두 특징들을 동시에 적용하여 수중 천이신호를 식별하고자 한다. 기존의 방법인 MFCC와 웨이블릿 패킷 기법과 이 두 방법을 동시에 적용했을 때의 식별률을 비교하였고, 전방향 신경회로망(feed-forward neural network)을 그 특징벡터의 성능을 평가하기 위한 식별기로 사용하였다.
본 논문에서는 수중 천이 신호에 대한 식별 알고리즘을 제안한다. 일반적으로 해양의 배경잡음은 스펙트럼 특성 및 에너지 변화가 적은 정재성을 갖는 반면에 천이 신호는 스펙트럼 및 에너지 변화가 큰 비정재성을 가진다. 따라서 수중 천이 신호 식별을 위하여 선행되어져야 하는 수중 천이 신호 탐지에서는 프레임 단위로 스펙트럼 변이와 에너지 변화를 이용한다. 제안한 수중 천이 신호 식별 알고리즘에서는 특징 벡터를 추출하기 위하여 위그너-빌 분포 함수를 기반으로 고유치 분해를 이용한다. 추출된 특징 벡터를 기반으로 탐지된 수중 천이 신호의 특징 벡터와 식별하고자 하는 데이터베이스에 있는 기준 신호의 특징 벡터와의 상관 값을 프레임 단위로 계산하고, 각 클래스별로 프레임 사상도를 산출하여 최대 값을 갖는 기준 신호로 탐지된 수중 천이 신호를 식별한다.
일반적으로 천이 신호의 식별은 지진학이나 상태 모니터링 분야, 특히 수중 음향 신호 처리 분야에서 활발한 연구가 이루어지고 있다. 수중 환경에서 발생하는 천이 신호로는 돌고래와 같은 해양 생물이 내는 천이 신호와 선박, 잠수함 등에서 발생하는 인위적인 천이 신호 등이 있으며, 수중 감시 체계에서 이러한 수중 천이 신호를 식별하는 문제는 매우 중요한 연구 주제이다. 본 논문에서는 음성 인식 분야에서 우수한 인식 성능을 보이는 MFCC(Mel Frequency Cepstral Coefficient)를 기반으로, 천이 신호로 탐지된 입력 신호에 대하여 분석 프레임 단위로 MFCC 특징 벡터를 추출하고, 식별하고자 하는 데이터베이스에 있는 모든 참조 신호들의 MFCC 특징 벡터와의 유클리디언 거리(euclidean distance)를 계산한 후, 가장 작은 값을 갖는 참조 신호로 입력 프레임들을 사상(mapping)시킴으로써 사상이 가장 많이 된 참조 신호로 탐지된 수중 천이신호를 식별하는 프레임 기반의 식별 알고리즘을 제안한다.
본 논문에서는 수중에서 발생되는 전이 신호의 자동 식별을 위하여 특징벡타를 추출하는 기법과 식별 알고리즘에 대하여 논한다. 특징벡타 추출기법으로 적은 계수로도 우수한 성능을 보이는 wavelet 변환을 사용한 방법을 제안하고 기종의 고전적인 방법들과 비교한다. 자동식별을 위해서는 MLP (Multilayer Perceptron), RBF (radial Basis Function), MLP-클래스 등 세 종류의 신경회로망을 사용하고, 성능 및 신뢰성을 높이기 위해서 두가지 특징벡타 및 세 식별기를 결합하는 방법을 사용한다. Traco의 표준 천이 데이터 집합 (standard transient data set) I과 모의 실험 데이터를 사용하여, 주어진 천이신호가 배경잡음에 비하여 충분히 에너지가 크고, 유한개의 소음원이 존재하며, 동시에 둘 이상의 소음원이 존재하지 않는다는 가정하에서 제안된 특징벡타 추출기법과 식별 알고리즘의 우수성을 확인한다.
일반적으로 센서 어레이는 많은 채널의 센서를 가지고 있으므로 분석해야 할 데이터의 양이 많다. 따라서 다변량(多變量) 분석 방법을 이용하는데, 크게 통계적 방법과 신경망 방법을 분석하고자 하는 데이터의 특성이나 분석에 필요한 환경 조건에 맞는 분석 방법을 선택하여 이용한다. 센서 어레이의 신호 패턴을 분석하기 위해 본 연구에서는 상태 천이 모델을 이용하여 측정된 가스의 특성을 반영할 수 있는 통계적 방법에 대해 연구하였다. 센서 어레이 신호 데이터를 패턴 모양의 특성을 나타낼 수 있는 상태 천이 모델로 변환하여 가스 종류 식별이 보다 정확하게 이루어 질 수 있도록 모델을 설계하는데 중점을 두고, 모델링 요소인 '상태'는 일정한 시간 간격으로 샘플링 하였을 때의 신호값으로,'천이 관계는 각 천이 벡터의 각으로 각각 정의하여 각도변이 기반 상태천이 모델링을 고안하였다.
본 논문에서는 넌코히어런트 비동기 조건에서 PSK, QAM 등의 선형 디지털 변조 방식을 자동으로 식별하는 알고리즘을 제안한다. 디지털 변조 신호는 심볼 천이 주기간 주파수, 위상, 진폭 등의 특성이 반복적으로 변하게 된다. 이러한 특성을 이용하여 변조 방식을 식별할 수 있도록 순환 모멘트와 고차 큐뮬런트를 이용하는 방법을 제안한다. 계층적 의사 결정 트리 방식의 알고리즘 구조를 사용하여 고속으로 처리 가능하도록 구성하였으며 총 4개의 특징 추출 인자를 사용하여 식별하였다. 모의실험 결과 심볼 수 4,096개, SNR 15dB 이상에서 95% 이상의 식별 정확도를 나타내었으며, 반송 주파수와 위상 편이가 발생하더라도 신호를 분류하는데 효과적임을 확인하였다.
본 논문은 맨체스터 부호를 사용하는 네트워크(network) 시스템 뿐만 아니라 이동체(mobile) 통신과 디지털 통신 시스템에서 맨체스터 신호를 재생하기 위한 새로운 클럭복원(clock recovery) 알고리즘을 제안하고 제안한 알고리즘의 구현에 관한 연구이다. 제안된 클럭 복원 회로는 간단한 하드웨어 구성으로 중앙 천이를 식별하지 않고 중앙 천이와 변화가 없는 인접 비트간의 천이 각각에 대하여 양극에지(positive edge)와 부극에지(negative edge) 신호를 사용하여 분주기를 제어하여 복원하고자 하는 클럭에 2배에 해당하는 클럭을 먼저 복원하고 양극에지와 부극에지 감지기를 프리셋트 시킨후, 이 클럭을 2분주함으로써 원하는 클럭을 정확히 얻을 수 있음을 알았다. 본 논문에서 제시한 알고리즘의 타당성을 입증하기 위하여 현행의 FM 방송에 디지틀 데이터 신호를 다중화하여 전송 하는 방송계 뉴미디어 시스템인 RDS(Radio Data System)시스템에 제안된 알고리즘을 적용하여 제시한 알고리즘의 타당성을 입증하였다.
본 논문에서는 함정의 주요 식별인자인 천이소음을 측정하기 위하여 웨이브렛 패킷을 이용한 수중 배경잡음 및 외부 잡음을 제거하는 새로운 방법을 제안한다. 함정 천이소음은 해양환경 특성상 낮은 신호대 잡음비를 가지므로, 개별센서로 측정하기 위해서는 잡음 제거가 필수적으로 요구된다. 배경잡음을 제거하기 위해 웨이브렛 임계치를 각 노드에 일괄적으로 적용하는 기존의 잡음제거 방법은 다양한 외부 잡음이 존재하는 수중환경에서는 적합하지 못하다. 따라서 본 연구에서는 배경잡음 및 외부 잡음을 제거하기 위해 신호와 잡음을 구분하여 각 노드별 임계치를 차별 적용하며, 이러한 임계치에 따른 변형된 소프트임계처리법을 제안한다. 제안 기법의 타당성은 모의 시뮬레이션과 다중 개별센서를 이용한 해상실험을 통하여 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.