• Title/Summary/Keyword: 천연섬유

Search Result 415, Processing Time 0.024 seconds

An Experimental Study on Fiber Reinforced Elastomeric Bearing (섬유보강 면진베어링의 실험적 특성 해석)

  • 문병영;강경주;강범수;김계수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • In order to study the characteristics of fiber reinforced bearing, the steel plates of laminated rubber bearing were replaced with fibers which have same effects of steel plates. The comparison of vertical test and horizontal test of laminated rubber bearing and fiber reinforced bearing shows that the effective damping of fiber reinforced bearing is higher than laminated rubber bearing. This result implies the high energy dissipation ability of fiber reinforced bearing under earthquake excitation. These fiber reinforced bearing can be applied to the low-coast building.

A Study on Fire Resistance of Abaca/Vinyl-ester Composites (마닐라 삼/비닐에스터 복합재료의 내화성 연구)

  • Lee, Dong-Woo;Park, Byung-Jin;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Eco-convivial composites with improved properties are essential to present polymer scenario and can be made easily by replacing partially/completely renewable materials either matrix or reinforcement along with few % of additives. In these investigations, Abaca fabric have been used as reinforcement for manufacturing of Vinyl ester composites through VARTM technique and study the effect of alkali surface treatment of abaca fabric and flame retardant additives i.e., ammonium polyphosphate (APP) with halloysite nano-clay (HNT) on mechanical and flame retardant properties. The results concluded that, surface treatment deceased the hydrophilic nature of fabric and enhanced the interfacial bonding with hydrophobic matrix and eventually increased mechanical properties slightly of developed composites. Similarly, the flame retardancy of the composites improved significantly and increases the burning time by varying the wt% of filler concentration.

Strength Characteristics of Mortar with Lime Composites and Natural Fiber (천연섬유와 석회복합체의 모르터 강도 성상에 관한 연구)

  • Hwang, Hey Zoo;Kim, Tae Hoon;Yang, Jun Hyuk
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.153-158
    • /
    • 2010
  • The objective of this study was to investigate the strength characteristics of mortar with lime composites using natural fiber or superplasticizer. Lime composites consist of lime and pozzolan materials. Flow according to adding natural fiber decreased and mortar proportion added cellulose fiber showed a higher strength characterisitics than other natural fiber. but compressive and shear strength in use of superplasticizer is not effective largely. In addition, lime composites, as an environment-friendly material, may help reduse $CO_2$, and save the energy. also this materials can be recycled in environmental aspects. afterwards, further in-depth studies will be necessary for cracks and durability with respect to its wide different applications, in applying it as a construction material.

Study on the Mechanism of Mechanical Property Enhancement in Carbon Fiber/Flax Fiber Hybrid Composite Materials (탄소섬유/아마섬유 하이브리드 복합재료의 기계적 물성 향상 기구에 관한 연구)

  • Jamil Abuzar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2023
  • Environmental pollution from waste and the climate crisis, due to rising global average temperatures, are reaching critical levels threatening human survival. Research is ongoing across various fields to solve this problem, with a key focus on developing eco-friendly, carbon-neutral materials. Our study aimed to integrate natural fibers, known for their environmentally friendly properties and lower carbon emissions, with carbon fibers. In general, combining high-strength and low-strength materials results in intermediate properties. However, we found that certain properties in our study exceeded those of typical carbon fiber composite materials. To validate this, we produced both carbon fiber composite materials and carbon fiber/natural fiber hybrid composite materials. We then compared their mechanical properties using a range of specific tests. Our results revealed that the hybrid composite material exhibited superior bending strength and fracture toughness compared to the carbon fiber composite material. We also identified the underlying mechanisms contributing to this strength enhancement. This breakthrough suggests that the use of hybrid composite materials may allow the production of stronger structures. Moreover, this can play a significant role in mitigating environmental pollution and the climate crisis by reducing carbon emissions, a major contributing factor to these global challenges.

Zein Nanocomposites Prepared by Electrospinning Technique (전기방사법으로 제조된 Zein 나노복합체)

  • Kim, In-Kyo;Choi, Jae-Young;Kim, Young-Hwa;Yeum, Jeong-Hyun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.5-5
    • /
    • 2011
  • 나노섬유를 제조하는 방법 중에는 상분리 현상을 이용한 방법, 자가 조립성을 이용한 방법, 템플레이트를 이용한 방법, 전기방사법이 있으며 특히 전기방사법은 연속적으로 균일한 나노섬유를 제조할 수 있다. 또한 전기방사법은 장비가 간단하며 고분자 blend ratio와 무기재료의 함량에 따라 뛰어난 특성을 나타내는 나노복합섬유를 만들 수 있다. 최근 식물에서 추출한 단백질을 전기방사법을 이용하여 나노입자 및 나노섬유를 제조하고 이를 의료 분야 등에 적용하기 위한 연구가 활발히 진행되고 있으며 이런 식물성 단백질은 동물성 단백질에 비하여 인체 적용이 용이하고 매장량이 풍부한 장점이 있다. 본 연구에서는 전기방사법을 이용하여 옥수수에서 추출한 단백질인 zein의 나노입자 및 나노섬유를 제조하였다. 또한 천연 추출물이 혼입된 복합 나노입자 및 나노섬유를 제조하여 zein이 가진 고유 특성 이외에 천연 추출물의 특성을 추가로 부여해서 더욱 발전된 나노입자 및 나노섬유를 제조하였다. 고분자 농도, 전압, 방사거리 등 다양한 공정변수를 조절하여 최적의 조건을 확립하였으며 제조된 나노입자 및 나노섬유는 field-emission type scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV/vis), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC)를 이용하여 특성분석을 실시하였다.

  • PDF

Morphological Characteristics of Weed Seed Fibers (잡초 종자섬유의 형태적 특징 비교)

  • Yoon, A Ra;Lee, Min Woo;Kim, Seul Ki;Kim, Jin-Seog
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.196-205
    • /
    • 2014
  • In this study, to obtain basic data for searching potential resources as new natural fibers, we investigated morphological and classificatory characteristics of 21 weed seed fibers. According to classification keys in this study, the collected weed seed fibers could be classified into total 13 types, showing their diversity. Seven species among them belonged to BOT3 type. Two species belonged to B2N0 and DOS3 type, respectively. Many of weed seed fibers had not branched. However, three species had various branched fibers at one main fibers on the seed. Three species had various branched fibers at several main fibers on the seed. Eight species had a smooth fiber surface but 13 species had a weakly or significantly developed-corniculum on the fiber surface. In the fiber cell shape, fiber cells of eight weed species were composed of one long cell without septum. But others had a fiber cell shape composed of a bunch of several long cells. Based on the easiness of harvesting, productivity of fibers, and morphological characteristics of seed fiber, it seemed that five seed fibers (TYPLA, METJA, HEMLY, IMPCK, and EREHI) should be additionally investigated if they are practically applicable as renewable resources for new natural fibers.