• Title/Summary/Keyword: 천수흐름

Search Result 120, Processing Time 0.028 seconds

A Numerical Simulation of a Viscous Flow behind a Sea-botton Isolated Ridge in Shallow Water (천해수역에 위치한 3차원 해저돌출물 주위 점성유동장의 수치시뮬레이션)

  • Lee, Young-Gill;Miyata, Headeki;Lee, Guen-Moo
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.29-42
    • /
    • 1992
  • 자유표면하에 잠긴 복잡한 3차원 물체 주위의 흐름을 해소하기 위한 수치계산법이 TUMMAC(Tokyo Univ. Modified Marker And Cell)법을 기초로 하여 개발되었다. 임의물체의 no-slip 3차원 물체표면조건을 보다 간단히 처리하기 위하여 "porosity"라는 개념이 도입되었으며, 담수성에 잠겨 있는 해저돌출물 주위의 유동을 계산하여 그 응용성을 검토하였다. 돌출물 후방의 복잡한 와동들의 상호간섭이 잘 시뮬레이션 되었다.시뮬레이션 되었다.

  • PDF

이달의 인터뷰 - 한국오리협회 지회를 가다

  • 한국오리협회
    • Monthly Duck's Village
    • /
    • s.103
    • /
    • pp.112-116
    • /
    • 2012
  • 2012년 흑룡의 해, 오리마을 신년호 이달의 인터뷰 주인공은 한국오리협회 전북도지회 김학영(대주농장 대표)지회장이다. 김학영 전북도지회장은 평소 협회에서 추진하는 행사 및 회의에 높은 관심을 갖고 적극적으로 참여하고 있어 귀감이 되고 있다. 그는 협회에서 열리는 워크숍, 회의, 행사에 빠지지 않고 참석하는 것은 협회 간 단결할 수 있는 지름길인 한편 사육 향상은 물론 오리 산업의 시장 흐름을 파악하는데 큰 도움이 된다며 협회의 주관 행사 회의에 적극적으로 참여해 줄 것을 권고했다. 그는 농업계열 고등학교 축산과를 졸업하고 현재 전북 남원시 주생면 상동리에서 1만7천수 규모의 대주농장을 경영하고 있으며, 2009년부터 전북도지회장을 역임한 후 한결같은 모습으로 전북지회를 이끌어왔다. 올해 2월 제19대 전북도지회장 임기를 마치는 그를 만나 이야기를 나누어 보았다.

  • PDF

Handling Method for Flux and Source Terms using Unsplit Scheme (Unsplit 기법을 적용한 흐름율과 생성항의 처리기법)

  • Kim, Byung-Hyun;Han, Kun-Yeon;Kim, Ji-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1079-1089
    • /
    • 2009
  • The objective of this study is to develop the accurate, robust and high resolution two-dimensional numerical model that solves the computationally difficult hydraulic problems, including the wave front propagation over dry bed and abrupt change in bathymetry. The developed model in this study solves the conservative form of the two-dimensional shallow water equations using an unsplit finite volume scheme and HLLC approximate Riemann solvers to compute the interface fluxes. Bed-slope term is discretized by the divergence theorem in the framework of FVM for application of unsplit scheme. Accurate and stable SGM, in conjunction with the MUSCL which is second-order-accurate both in space and time, is adopted to balance with fluxes and source terms. The exact C-property is shown to be satisfied for balancing the fluxes and the source terms. Since the spurious oscillations in second-order schemes are inherent, an efficient slope limiting technique is used to supply TVD property. The accuracy, conservation property and application of developed model are verified by comparing numerical solution with analytical solution and experimental data through the simulations of one-dimensional dam break flow without bed slope, steady transcritical flow over a hump and two-dimensional dam break flow with a constriction.

Hydraulic Characteristics of Dam Break Flow by Flow Resistance Stresses and Initial Depths (흐름저항응력 및 초기수심에 따른 댐붕괴류의 수리특성)

  • Song, Chang Geun;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1077-1086
    • /
    • 2014
  • The flood wave generated due to dam break is affected by initial depth upstream since it is related with hydraulic characteristics propagating downstream, and flow resistance stress has influence on the celerity, travel distance, and approaching depth of shock wave in implementing numerical simulation. In this study, a shallow water flow model employing SU/PG scheme was developed and verified by analytic solutions; propagation characteristics of dam break according to flow resistance and initial depth were analyzed. When bottom frictional stress was applied, the flow depth was relatively higher while the travel distance of shock wave was shorter. In the case of Coulomb stress, the flow velocity behind the location of dam break became lower compared with other cases, and showed values between no stress and turbulent stress at the reach of shock wave. The value of Froude number obtained by no frictional stress at the discontinuous boundary was the closest to 1.0 regardless of initial depth. The adaption of Coulomb stress gave more appropriate results compared with turbulent stress at low initial depth. However, as the initial depth became increased, the dominance of flow resistance terms was weakened and the opposite result was observed.

Treatment of the Bed Slope Source Term for 2-Dimensional Numerical Model Using Quasi-steady Wave Propagation Algorithm (Quasi-steady Wave Propagation 알고리듬을 이용한 2차원 수치모형의 하상경사항 처리)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.145-156
    • /
    • 2011
  • Two dimensional numerical model of high-order accuracy is developed to analyze complex flow including transition flow, discontinuous flow, and wave propagation to dry bed emerging at natural river flow. The bed slope term of two dimensional shallow water equation consisting of integral conservation law is treated efficiently by applying quasi-steady wave propagation scheme. In order to apply Finite Volume Method using Fractional Step Method, MUSCL scheme is applied based on HLL Riemann solver, which is second-order accurate in time and space. The TVD method is applied to prevent numerical oscillations in the second-order accurate scheme. The developed model is verified by comparing observed data of two dimenstional levee breach experiment and dam breach experiment containing structure at lower section of channel. Also effect of the source term is verified by applying to dam breach experiment considering the adverse slope channel.

Depth Averaged Numerical Model for Sediment Transport by Transcritical Flows (급변류에 의한 하상변동 예측을 위한 수심적분 수치모형)

  • Kim, Boram;Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1061-1066
    • /
    • 2014
  • A stable second-order finite volume method was proposed to predict sediment transport under rapidly varied flow conditions such as transcritical flow. For the use under unsteady flow conditions, a sediment transport model was coupled with shallow water equations. HLLC approximate Riemann solver based on a monotone upstream-centered schemes for conservation laws (MUSCL) reconstruction was used for the computation of the flux terms. From the comparisons of dam break flow experiments on erodible beds in one- and two-dimensional channels, good agreements were obtained when proper parameters were provided. Lastly, dam surface erosion problem by overtopped water was simulated. Overall, the numerical solutions showed reasonable results, which demonstrated that the proposed numerical scheme could provide stable and physical results in the cases of subcritical and supercritical flow conditions.

Numerical Analysis of Synchronous Edge Wave Known as the Driving Mechanism of Beach Cusp (Beach Cusp 생성기작으로 기능하는 Synchronous Edge Wave 수치해석)

  • Lee, Hyung Jae;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.409-422
    • /
    • 2019
  • In this study, we carried out the 3D numerical simulation to investigate the hydraulic characteristics of Synchronous Edge wave known as the driving mechanism of beach cusp using the Tool Box called the ihFoam that has its roots on the OpenFoam. As a wave driver, RANS (Reynolds Averaged Navier-Stokes equation) and mass conservation equation are used. In doing so, we materialized short-crested waves known as the prerequisite for the formation of Synchronous Edge waves by generating two obliquely colliding Cnoidal waves. Numerical results show that as can be expected, flow velocity along the cross section where waves are focused are simulated to be much faster than the one along the cross section where waves are diverged. It is also shown that along the cross section where waves are focused, up-rush is moving much faster than its associated back-wash, but a duration period of up-rush is shortened, which complies the typical characteristics of nonlinear waves. On the other hand, due to the water-merging effect triggered by the redirected flow toward wave-diverging area at the pinacle of run-up, along the cross section where waves are diverged, offshore-ward velocity is larger than shore-ward velocity at the vicinity of shore-line, while at the very middle of shoaling process, the asymmetry of flow velocity leaned toward the shore is noticeably weakened. Considering that these flow characteristics can be found without exception in Synchronous Edge waves, the numerical simulation can be regarded to be successfully implemented. In doing so, new insight about how the boundary layer streaming occur are also developed.

Numerical Simulation of Urban Flash Flood Experiments Using Adaptive Mesh Refinement and Cut Cell Method (적응적 메쉬세분화기법과 분할격자기법을 이용한 극한 도시홍수 실험 모의)

  • An, Hyun-Uk;Yu, Soon-Young
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.511-522
    • /
    • 2011
  • Two-dimensional shallow water model based on the cut cell and the adaptive mesh refinement techniques is presented in this paper. These two mesh generation methods are combined to facilitate modeling of complex geometries. By using dynamically adaptive mesh, the model can achieve high resolution efficiently at the interface where flow changes rapidly. The HLLC Reimann solver and the MUSCL method are employed to calculate advection fluxes with numerical stability and precision. The model was applied to simulate the extreme urban flooding experiments performed by the IMPACT (Investigation of Extreme Flood Processes and Uncertainty) project. Simulation results were in good agreement with observed data, and transient flows as well as the impact of building structures on flood waves were calculated with accuracy. The cut cell method eased the model sensitivity to refinement. It can be concluded that the model is applicable to the urban flood simulation in case the effects of sewer and stormwater drainage system on flooding are relatively small like the dam brake.

An Application of the Multi-slope MUSCL to the Shallow Water Equations (천수방정식에 대한 다중 경사 MUSCL의 적용)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.819-830
    • /
    • 2011
  • The multi-slope MUSCL, proposed by T. Buffard and S. Clain, determines slopes of conserved variables at each edge of a cell in the linear reconstructions of data. In this study, the second order accurate numerical model was developed according to the multi-slope MUSCL to solve the shallow water equations on the unstructured grids. The HLLL scheme of approximate Riemann solvers was used to calculate fluxes. For the review of the applicability of the developed model, the results of the model were compared to the 'isolated building test' and the 'model city flooding experiment' conducted as part of the IMPACT (Investigation of extreMe flood Processes And unCerTainty) project in Europe. There were limitations to predict abrupt rising of water depths by the resistance of model buildings and water depths at the specific locations among the buildings. But they were identified as the same problems also revealed in results of the other models to the same experiment. On the more refined meshes to the 'model city flooding experiment' simulated results showed good agreement with measurements. It was verified that the developed model simulated well the complex phenomena such as a dam-break problem and the urban inundation by flash floods.

측방향흐름이 있는 만곡부 흐름의 해석

  • Park, Jae-Hyeon;Yun, Seong-Yong
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.87-96
    • /
    • 1992
  • Hydraulic characteristics such as velocity, surface level and flow pattern in the curved channel are analyzed by model experiment, where model is scaled down by 1:20 for prototype channel containing side branch and curved section. The withdrawal of channel flow from channel is analyzed to find the effect on the curve section. The numerical scheme for shallow water equation using ADI method is verified through the comparison of hydrauric characteristics by experiment with that by numerical analysis in the side section of model channel. The comparison of numerical results with experimental data shows that velocity, surface level and flow pattern agree well for overall channel. Because fo the relative contraction of cross section in the curved section caused by rectangular system, the velocity calculated by numerical analysis is faster in curved section than that from experiment, which can be improved using finer spatial grid in curved section. The characteristics of the curved section such that the surface level is higher in the outer zone of curved section and the velocity is faster in the inner zone are well simulated by both experiment and numerical analysis. The effect of side branch reaches within the zone of the curved section.

  • PDF