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1. Introduction

The analysis of the flow and wave-making
phenomena around a physical solid is an
important subject in the fields of naval
architecture, ocean and coastal engineering.

Especially, the analysis of fluid dynamic

characteristics for the currents and waves which
is influenced with the topography of ocean is one
of the most important research filed. The flows
around the bodies of offshore structure or the
projecting parts of sea-bottom accompanies
complicated vortical motions. Moreover, these
become more complicated phenomena in the

vicinity of a free-surface. For a long time,
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potential and boundary layer theories have been
used to analyze the general features of the flow
pattern around a smooth hull surface or a

simplified surface of an offshore structure.
However, the flows after separation and the
nonlinear free-surface have been very roughly
treated, because these have very complicated
features and the classical theories could not deal
with these problems. Therefore, the nonlinear
phenomena of wave breaking, vortex generation,
flow separation and so forth which take place on
the complex offshore structure piercing the free-
surface have been mostly treated with
experimental methods.

Yamada and Miyata®? suggested the TUMMAC-
VI method using a fixed rectangular coordinate
system that is applicable to simulate the viscous
flow around a three-dimensional complicated
‘body. They treated approximately no-slip body
surface condition on the body boundary cells
making use of two kinds of porosity parameters
and demonstrated by the simulation of a viscous
flow past a sphere at the Reynolds number 1000.
The complete three-dimensional vortex shedding
motion was qualitatively well simulated. Most of
the numerical computation methods employ a
body boundary fitted coordinate system. However,
be

curvilinear grid system for the boundary surface

it will impossible to generate a useful
of complex shape such as an offshore structure
piercing the free-surface which is accompanied
with violent nonlinear waves. In case of two-
dimensional body, the authors had presented a
finite-difference method(TUMMAC-Vwy method)?"
® using an irregular leg length in order to treat
the
framework of a rectangular grid system. But, it
difficult
the

complicated

the no-slip body boundary condition in

may be in three-dimensional case,

because program code is extremely

and the computation time is

remarkably increased. Therefore, in order to
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simplify the treatment of the three-dimensional
condition in
the

introduced in this paper. Moreover, the treatment

body boundary a rectangular

coordinate system, idea or porosity is
technique of the free-surface conditions, which is
used in the TUMMAC— IV method”, is engaged
for the computation of free-surface.

In order to investigate the applicability of
method, the

computational procedure is applied to the flow

present newly-developed
around a projecting part of sea-bottom in shallow
water. For the research of this sort, we can cite
a good number of papers across the world.
Houghton and kasahara” investigate the nature of
the hydraulic jumps in the flows across a two-
They the
time-dependent  “shallow water”

dimensional  ridge. used one-
dimensional
equations for the motion of an incompressible,
homogeneous, inviscid and hydrostatic fluid. The
nonlinear phenomenon of the jumps was
determined by using asymptotic solutions to the
model equations. Lamb and Britter” performed
the
experiments for the flow over a three-dimensional
They

the

numerical simulation of a homogeneous non-

series of numerical and laboratory

obstacle in shallow water condition.

employed a finite-difference model in

rotating flow. The results demonstrated how the
flow over a three-dimensional obstacle deviates

from the patterns established for a two-
dimensional ridge. Miyata, Matsukawa and
Kajitani”  investigated the two-dimensional

shallow water flow over an isolated obstacle by a
numerical technique based on a finite-difference
method (TUMMAC-V method). The computed
results indicated that the viscous and free-surface
flow in a shallow water condition cannot be
explained without the understanding of wave
breaking nature. Recently, a model for describing
the discontinuous atmospheric flows over a

monutain ridge was suggested by Cullen”. An
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implicit finite-difference method using Lagrangian
evolution equations was presented for modelling
such flows.

The method
elaborated in Section 2. the numerical simulation

numerical  computation is
for a projecting part of sea-bottom and brief
concluding remarks are given in Sections 3 and

4, respectively.
2. Numerical computation method

2.1 Governing equations

The governing equations are the Navier-Stokes
(N—S) equations and the continuity equation in
the case of a three-dimensional incompressible
fluid, and represented as follows.

(9111 — a(b — aq)‘ -y _QBL + V*_'a
at aXi aXi aX, an
C(BUy L du .y, v du oy
(ax;) Vsaxj( )) axj(axj axi)
ML, e (1)
QU e,
0% 0, (2)

where u is the velocity component in each
direction, ¢=p/r(P ; pressure, p; density), o, is
turbulent pressure per unit density, v is the
kinematic viscosity and v, is the eddy viscosity
the SGS(Sub-Grid Scale)
Also, M;
numerical diffusion, dispersion or dissipation term

coefficient  from

turbulence model. is the arbitrary
for the stability of solution, and f; is the external
force per unit mass that is the gravitational
direction

acceleration in the case of vertical

component.

2.2 Grid system

The computational domain is discretized into a
The
the

rectangular  staggered mesh system.

staggered mesh system increase

31

computational accuracy of mass and momentum
conservation property in comparison to a regular
mesh system. Since the grid lines do not coincide
with the body boundary and the free-surface, it
can not be anticipated that the computational
accuracy is good for the treatment of the body
boundary and free-surface conditions. Also, the
resolution of the flow simulation is not so high in
the vicinity of the boundaries. However, an
advantage of this grid system is that the required

effort for the grid generation is negligibly small,

which is most important for the practical
applications.
In order to increase the computational

accuracy, the body boundary and the free-surface
conditions are implemented by several ingenious
numerical techniques. That is, a generalized 2nd-
order differential scheme and velocity-pressure
simultaneous iterative method are used for the
body boundary condition, an irregular star and
the iterative calculation of marker point are used
the
Moreover, the computationai domain is divided

for free-surface condition, respectively.
into two regions to increase of the computational
efficiency. The two regions are the fluid region
composed of fluid cells (F-cells) and the body
boundary region composed of body boundary cells
(B-cells). The details of the grid system are

explained in reference(1) and (9).

2. 3 Boundary conditions

All cells used in the computational domain are
classified into full-of-fluid cells (F-cells), body
boundary cells(B-cells) and empty cells(E-cells).
The configuration of a three-dimensional body is
represented by two kinds of porosity in B-cells,
that is, volume-porosity y and plane-porosity B as
shown in Fig. 1. The volume-porosity is the ratio
of fluid portion in each cell and it is defined at
a pressure point. The plane-porosity is the ratio
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Fig. 1 Definition sketch of volume and plane

porosity.

of fluid portion on each plane of a cell as
expressed by equation (3) and it is defined at a

velocity point.
BH%: (Yi+Yi+l)/2- ........................... (3)

Moreover, the B-cell is flagged as a cell of
which volume-porosity is greater than 0.5 but less
than 1.0. A cell of which volume-porosity if less
than 05 is flagged as E-cell. Also, a F-cell facing
a E-cell is defined as a special B-cell(B*-cell in
Fig. 2), because this cell can not be neighboured
with six pressure points. Velocity point is

)

x

Fig. 2 Cell flagging in TUMMAC-VI sheme.

assumed to exist when the plane-porosity is
greater than 0.5. Since the porosity is a scalar, it
is used not only for the flagging of cells and for
the calculation of flux and divergence but also for
the choice of differencing scheme and for the
calculation of first and second derivative terms in
the governing equations.

For the no-slip body boundary condition, the
velocity in a B-cell, of which plane-porosity is
greater than 0.5 but less than 1.0, is interpolated
by the neighbouring velocities and using the
definition of zero-velocity at the body surface as
shown in Fig. 3. The velocities, which are not

J——

PB+1/2

FLUX

A-1/2

ZI
Fig. 3 Interpolation of velocity and definition of

flux at a body boundary cell in TUMMAC-

VI scheme.

>
X

interpolated themselves, are used for the
interpolation of B-cell’'s velocities. Also, the plane-
porosity of a cell, where neighbouring velocities
are situated, is used as a weighting factor in the
interpolation of a velocity using a quadratic
equation. The no-slip condition is incorporated in
the differencing scheme, too. In the vicinity of
body surface, the modified second-order centered
differencing is used for the convection and
diffusion term considering the plane-porosity and
zero-velocity on the body surface.
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For the calculation of pressure in B-cells the
following simultaneous iterative method is used,

in order to suitably implement the zero-
divergence condition in B-cells.
ot = om +ﬁ S D, eeeeeeeeseeseneies (4)
e
+ _Ykzl_:zY)l;_l ], e (5)

where D is the divergence of a cell, m is the
iteration number and o is the relaxation factor.

In free-surface calculation, the exactly same
technique with the TUMMAC— NV method” is
employed. Namely, the Lagrangian movement of
marker particles is used for the fulfilment of
Chan and Street'” is applied to the dynamic
condition on that surface. Some interpolation and
extrapolation techniques are employed for the
determination of the velocity components at the
position of a marker particle, i.e., four-point and
nine-point  interpolations and  zero-gradient
extrapolations are used.

At the

pressure

inflow boundary both velocity and
the
determined values for a uniform flow. In the case

distribution are set as pre-
of other boundaries the velocities and pressures
are set equal to the inner values so that their
gradients in the direction normal to the boundary
are set zero, that is, a Neumann condition is

employed.

2.4 Computational procedure

The  computational  algorithm  of  the
TUMMAC—VI method are well explained in
Yamada and Miyata(1), and very brief

explanations are described here. The governing
equations (1) and (2) are represented in finite-
difference forms, and solved as an initial-and

boundary-value problems including the free-
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surface conditions and using time-marching

The N—-S
equations are represented by first-order forward

procedure and iteration methods.
diferencing in time and second-order centered
differencing in a Cartesian coordinate system
except for the convection terms. The differencing
of the convection terms are described by a third-
The
computation is started at a rested state, and the

order upwind differencing scheme.
velocities in computational domain are gradually
accelerated for a desired inflow velocity. After the
steps of acceleration the computation is continued
for an adequate time step, which is supposed to
be a sufficient time to have almost steady state.

The

equation result in the Poisson equation for the

momentum equations and continuity
pressure distribution. Updating of the velocity
field is made after updating the pressure field by
solving the Poisson equation and this cycle is
repeated in the time-marching procedure. The

velocity field is updated as the following equation.

where n is the number of time step, C; is the
convection term, D; is the diffusion term and E;
is the eddy viscous term. For the determination
of the ¢ and E, term, the SGS turbulence

model

is incorporated into the present method
so that a complicated flow in high Reynolds
number may be presumably well simulated.

For the solution of the Poisson equation the

following iteration formula is used in F-cells.

m+1 m m+1 m

— + pu— o
ik q)i,J.k w(%.kcal ‘?,.k ), @
where ¢™ical. is a temporary pressure at each

iteration step. In order to maintain the stability
the
explicitly determined in the all computational

of computation, temporary pressure is
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Fig. 4 Comptational domain for a isolated ridge in shallow water condition.

domain. The iteration is continued until the
second term of Eq.(7) converges within an

allowable error.
3. Numerical simulation

The the

numerical simulation method

applicability  of newly-developed
is examined by
simulating the flow pattern around a projecting
part of sea-bottom in shallow water condition. As
shown in Fig. 4 the computation was performed
about a three-dimensional projecting model of
cone type with bottom diameter 0.36. The uniform
flow which has a main velocity U=0.2m/s and an
empirically determined velocity profile near the
bottom surface are provided on inlet surface.
Therefore, the Froude number based on the
water depth is 0.165 and the Reynolds number
based on the height of the projecting part is 23,
230. Any other non-dimensional value is based on
the height of the projecting part in this paper. As
clarified by Lamb and Britter®, a hydraulic jump
on the free-surface will not be appeared in this
condition.

The grid system in the vicinity of projecting

part is shown in Fig. 5. Since a cell size is
all the
computational domain, the height of the projecting

uniformly  lemX1lcmX1lcm over
part is divided into 12 cells and the total number
of cells is 139,000.

The computation is started from the rest
condition, and the fluid all over the computational
domain is accelerated for 1,000 time steps. After
the acceleration is finished, the computation is
conitnued to 3,000 time step (T=25.0, where T
is the non-dimensional time).

The simulated results are shown in Figs. 6 to
12. The time-sequential development of the
contour maps of vorticity is shown in Fig. 6, 7
and 8 for the cases of the Y—Z, X—Z and X~Y
plane, respectively. The strength of vorticity is
calculated by integrating the two-dimensional
circulation of a cell and dividing it by the area of
the each side surface in a cell. In these figures,
O, is the vorticity of the x-axis vortex and O, O,
are those of the y-and z-axis vortex, respectively.
The contour pattern of O, is periodically repeated
as observed in Fig. 6 and a large pair of vortices
will be recurrently developed as shown at T=18.

7 in this figure. As shown in Fig. 7, shear flows

_34_
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Fig. 5 Grid system in the vicinity of a isolated ridge in shallow water condition.
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02 Contour X-Z PL. J=28 NT=3000 T=25.0

Fig. 6 Vorticity contour maps on the Y-Z plane
I1=102. Anticlockwise vorticity is contoured
in bold lines and the contour interval is
1/s.
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are developed beneath the free-surface and above
the bottom. Also, the vortices generated between
the free-surface and the top of the projecting part
are observed in this figure. Fig. 8 shows the
influence of bottom in the shedding motion of
That it
observed that the breadth of the wake flow region

vortex component Os. is, is clearly
on the X-Y plane K=35 is narrower than that on
the plane K=11. Here X-Y plane number K is
same as observed in Fig. 5.

The simulated wave contour maps are shown
in Fig. 9. An intensive non-linear waves are
developed just behind the shear flow layer of the
free-surface. Fig. 10 shows the pressure contour
map of each X-Y plane when T=25.0. It is found
that the

dependent upon the pressure distribution of the

intensive non-linear waves are not

X-Y planes below the free-surface. This may be
presumably due to a locally strong non-linear
interaction between the vortices and the free-
surface.

Fig. 11 and 12 show the pressure distribution
along the model surface at the X-Y sections and
a X-Z section, respectively. Although the grid
spacing is not sufficiently fine, the pressure
distributions on the model surface are not so
fluctuated the

separation.

except for regions of flow

4. Concluding remarks

In the framework of a rectangular coordinate
system, a numerical method is developed for the
simulation of a three-dimensional viscous flow
around a submerged body under the free-surface.
In order to investigate the availability of the
present method, a flow past a projecting part of
sea-bottom is numerically simulated in a shallow
The
phenomena of the vortecies which are shedded

water condition. complicated interaction

from the projecting part were demonstrated
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02 Conuour X—Z PL. J=28 NT=3000 T=25.0

Fig. 7 Vorticity contour maps on the X-Z plane J=28. Anticlockwise vorticity is contoured

in bold lines and the contour interval is 1/s.
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03 Contour X-Y PL. K=5 NT=2750 T=229

03 Contour X-Y PL. K=5 NT=2500 T=20.8

03 Contour X-Y PL. K=5 NT=3000 T=25.0

Fig. 8 Vorticity contour maps on the X-Y plane K=5 and K=11. Anticlockwise vorticity is contoured

in bold lines and the contour

interval is 1/s.

03 Contour X-Z PL. K=11 NT=2750 T=229

M=

= 3 / 5
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03 Contour X-Z PL. K=11 NT=2500 T=20.8

03 Contour X-Z PL. K=11 NT=3000 T=25.0

Fig. 8 (Continued)
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WC Contour X-Y PL. FS NT=2500 T=20.8 WC Contour X-Y PL. FS NT=3000 T=25.0

Fig. 9 Wave contour maps above a submerged isolated ridge. Positive wave height is drawn in

bold lines and the contour interval is 0.25mm.

P Contour X-Y PL. K=8 NT=3000 T=250 P Contour X-Y PL. K=14 NT=3000 T=25.0
Fig. 10 Pressure contour maps around a submerged isolated ridge at T=25.0. Positive pr-

essure coefficient is drawn in bold lines and the contour interval is 0.05.



40 Young-Gill Lee - Hideaki Miyata * Guen Moo Lee

1.0
Cp K=11 (Z=0.791)

L

t t
- o o
o o o

T -

+
-

<

R

+ - : .
0 90 180 270 DEGREE 360

Cp K=8 (Z=0.624)

0 90 180 270 360
DEGREE

Cp K=5 (Z=0.374)

——t

70 360
DEGREE

L 1
—- o o
o o o
T
(=]
© |
(=]
-
00 4
(=]
T

Fig. 11 Pressure distribution on a submerged isolated ridge at the X-Y sections K=5 8 and 11,
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Fig. 12 Pressure distribution on a submerged isolated ridge at the X-Z section Y=00, T=250.

roughly. The present method is expected to be
very useful for the analysis of the complicated
three-dimensional viscous flow about an arbitrary
object in ocean problems. Although the degree of
computational accuracy is not partially sufficient
for the resolution of the physical phenomena in
the vicinity of the body surface as shown in the
pressure distributions and
it could be

introduction of a multi-grid method in the near

surface vorticity

contour maps, improved by the
future.
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