• Title/Summary/Keyword: 천부 탄성파

Search Result 92, Processing Time 0.032 seconds

Maximising the lateral resolution of near-surface seismic refraction methods (천부 탄성파 굴절법 자료의 수평 분해능 최대화 연구)

  • Palmer, Derecke
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 2009
  • The tau-p inversion algorithm is widely employed to generate starting models with most computer programs, which implement refraction tomography. This algorithm emphasises the vertical resolution of many layers, and as a result, it frequently fails to detect even large lateral variations in seismic velocities, such as the decreases which are indicative of shear zones. This study demonstrates the failure of the tau-p inversion algorithm to detect or define a major shear zone which is 50m or 10 stations wide. Furthermore, the majority of refraction tomography programs parameterise the seismic velocities within each layer with vertical velocity gradients. By contrast, the Generalized Reciprocal Method (GRM) inversion algorithms emphasise the lateral resolution of individual layers. This study demonstrates the successful detection and definition of the 50m wide shear zone with the GRM inversion algorithms. The existence of the shear zone is confirmed by a 2D analysis of the head wave amplitudes and by numerous closely spaced orthogonal seismic profiles carried out as part of a later 3D refraction investigation. Furthermore, an analysis of the shot record amplitudes indicates that a reversal in the seismic velocities, rather than vertical velocity gradients, occurs in the weathered layers. The major conclusion reached in this study is that while all seismic refraction operations should aim to provide as accurate depth estimates as is practical, those which emphasise the lateral resolution of individual layers generate more useful results for geotechnical and environmental applications. The advantages of the improved lateral resolution are obtained with 2D traverses in which the structural features can be recognised from the magnitudes of the variations in the seismic velocities. Furthermore, the spatial patterns obtained with 3D investigations facilitate the recognition of structural features such as faults which do not display any intrinsic variation or 'signature' in seismic velocities.

Effect of Different Misfired Gun on Seismic Survey Quality (불발 음원에 따라 탄성파탐사 성능에 미치는 영향)

  • 유해수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.159-162
    • /
    • 1998
  • 불발 음원에 따른 음원 배열의 빔 패턴 변화와 남극탐사자료에서 원거리장 파형 변화를 분석하였다. 원거리장 파형의 주신호 진폭은 전체 건 부피의 약 40%에 해당하는 음원들이 불발을 일으킬 경우, 탐사성능이 33% 정도 떨어지는 것으로 확인되었다. 같은 간격의 음원들이 불발 시에는 배열형태와 관계없이 길이 및 폭배열의 빔 폭이 동일하게 나타난다. 불발 음원의 부피가 증가됨에 따라 상대적으로 음파 에너지가 작아 지지만 빔 폭이 40$^{\circ}$ - 34$^{\circ}$로 좁아지는 경향을 나타낸다. 따라서 탄성파 탐사에서 필요로 하는 좁은 파형이 생성됨으로써 천부 지층탐사에 적합한 것으로 확인되었다.

  • PDF

Seismic Imaging of a Tidal Flat: A Case Study for the Mineopo Area (조간대(갯벌)에서의 탄성파 탐사: 민어포 지역의 사례)

  • Jou, Hyeong-Tae;Kim, Han-Joon;Lee, Gwang-Hoon;Lee, Sang-Hoon;Jung, Baek-Hoon;Cho, Hyun-Moo;Jang, Nam-Do
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.197-203
    • /
    • 2008
  • A shallow high-resolution seismic reflection survey was carried out at the Mineopo tidal flat on the western coast of Korea. The purpose of the survey was to investigate shallow sedimentary structure of the tidal flat associated with the recent sea level change. A total of 795 shots were generated at 1 m interval from a 5-kg hammer source and recorded on 48 channels of 100 Hz geophones along two mutually perpendicular profiles. The water-saturated ground condition resulted in suppressed ground rolls by significantly decreasing rigidity. In addition, seismic velocities over 1500 m/s provided easy segregation of reflected arrivals from lower velocity noise. As a consequence, seismic sections from the study area show significantly higher resolution and signal to noise ratio than conventional land seismic sections. The tidal flat consists of 5 sedimentary sequences above acoustic basement. The seismic sections reveal the continuous structure of the tidal flat formed in association with sea level rise during the Holocene.

공주 능치지역 천부 지하구조에 대한 지구물리학적 연구

  • Kim, Gi-Hyeon;Seo, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 2001
  • Geophysical survey was carried out to derive some information on the existence of near-surface anomalous body at Reung-Chi area in Kongju. Resistivity, seismic, magnetic and gravity method were applied. Geophysical survey that was applied was the electrical resistivity survey, seismic survey, magnetic survey, gravity survey. These surveys are analyzed to provide data of high resolution. As a result of analysis of resistivity survey, anomalies showing high resistivity anomaly than around appeared, and the one showing M-shape out of those explains the possibility that underground common or other underground structure or geographical anomalous zone could exist in the underground. As a result of analysis of seismic survey, it is clear that the low velocity layer is spread as far as the bottom of the underground. It is possible to presume that it is a phenomenon appearing while going through the underground space where it is lying in the underground. Area that shows unusual situation in interpretation of data on seismic waves are included into the area that once showed resistivity anomaly, the results of both seismic surveys come in accord. As a result of magnetic survey, a circle-shape of twin magnetic fields in the area where abnormalities are shown between electrical resistivity survey and seismic survey is appeared. Given the area of gravity survey, abnormalities whose density is different from the one around the bottom of the underground. As a result of analogizing the data of underground of the subsurface based on analysis of data from each survey, it was interpreted that anomalous zone exists commonly in the research areas.

  • PDF

Seismic reflection survey in a tidal flat: A case study for the Mineopo area (갯벌 지역에서의 탄성파 탐사: 민어포 조간대 지역의 사례)

  • Jou Hyeong-Tae;Kim Han-Joon;Lee Gwang-Hoon;Choi Dong-Lim;Kim Min-Ji;Cho Hyun-Moo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.67-84
    • /
    • 2002
  • A shallow high-resolution seismic reflection survey was carried out at the Mineopo tidal flat on the western coast of Korea. The purpose of the survey was to investigate shallow sedimentary structure of the tidal (fat associated with the recent sea level change. A total of 795 shots were generated at 1 m interval from a 5-kg hammer source and recorded on 48 channels of 100 Hz geophones along two mutually perpendicular profiles. The water-saturated ground condition resulted in suppressed ground rolls by significantly decreasing rigidity. In addition, seismic velocities over 1500 m/s provided easy segregation of reflected arrivals from lower velocity noise. As a consequence, seismic sections were created that are high in resolution and signal to noise ratio as well. The stack sections show that the tidal flat consists of 5 sedimentary sequences above acoustic basement. Although deposition is largely characterized by the transgressive sedimentary facies resulting from sea level rise, erosional surfaces are well-resolved within the sequences.

  • PDF

Geophysical survey around East Sea Research Institute (KORDI) using multi-beam and shallow seismic survey (다중빔 음향측심기 및 천부탄성파 탐사를 이용한 동해연구소 주변 지구물리조사)

  • Jeong, Eui-Young;Kim, Chang-Hwan;Lee, Seung-Hun;Kim, Ho;Park, Chan-Hong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.185-190
    • /
    • 2008
  • Geophysical survey were investigated in the offshore around East Sea Research Institute, Korea Ocean Research and Development Institute (Jukbyeon-myun, Uljin-gu, Gyeongsangbuk-do, Korea). The surveys were conducted aboard the R/V Jangmok in 2008 using a hull-mounted EM 3002 multi-beam echosounder. Precise bathymetry and seabed images were obtained using multi-beam and thicknesses of sedimentary layer were found through seismic survey. Submarine topography deepens parallel to the coastline to -60 m and rock mass distributed in the southeast of study area. By finding the thickness of sedimentary layer through seismic survey, a sedimentary thickness on the study area was established. Futhermore, monitoring data of bathymetry, substructure and sedimentary environment will be secured through successive geophysical investigation.

  • PDF

Fusion of 3D seismic exploration and seafloor geochemical survey for methane hydrate exploration (메탄 하이드레이트 탐사를 위한 3 차원 탄성파 탐사와 해저면 지구화학탐사의 융합 기술)

  • Nagakubo, Sadao;Kobayashi, Toshiaki;Fujii, Tetsuya;Inamori, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The MH21 Research Consortium has conducted a high-resolution 3D seismic survey and a seafloor geochemical survey, to explore methane hydrate reservoirs in the eastern Nankai Trough, offshore Japan. Excellent geological information about shallow formations was obtained from the high-resolution 3D seismic survey, which was designed to image the shallow formations where methane hydrates exist. The information is useful in constructing a geological and geochemical model, and especially to understand the complex geology of seafloor, including geochemical manifestations and the structure of migration conduits for methane gas or methane-bearing fluid. By comparing methane seep sites observed by submersibles with seismic sections, some significant relationships between methane hydrate reservoirs, free gas accumulations below the seafloor, and seafloor manifestations are recognised. Bathymetric charts and seafloor reflection amplitude maps, constructed from seismic reflections from the seafloor, are also useful in understanding the relationships over a vast area. A new geochemical seafloor survey targeted by these maps is required. The relationships between methane hydrate reservoirs and seafloor manifestations are becoming clearer from interpretation of high-resolution 3D seismic data. The MH21 Research Consortium will continue to conduct seafloor geochemical surveys based on the geological and geochemical model constructed from high-resolution 3D seismic data analysis. In this paper, we introduce a basis for exploration of methane hydrate reservoirs in Japan by fusion of 3D seismic exploration and seafloor geochemical surveys.

Statics corrections for shallow seismic refraction data (천부 굴절법 탄성파 탐사 자료의 정보정)

  • Palmer Derecke;Nikrouz Ramin;Spyrou Andreur
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.7-17
    • /
    • 2005
  • The determination of seismic velocities in refractors for near-surface seismic refraction investigations is an ill-posed problem. Small variations in the computed time parameters can result in quite large lateral variations in the derived velocities, which are often artefacts of the inversion algorithms. Such artefacts are usually not recognized or corrected with forward modelling. Therefore, if detailed refractor models are sought with model based inversion, then detailed starting models are required. The usual source of artefacts in seismic velocities is irregular refractors. Under most circumstances, the variable migration of the generalized reciprocal method (GRM) is able to accommodate irregular interfaces and generate detailed starting models of the refractor. However, where the very-near-surface environment of the Earth is also irregular, the efficacy of the GRM is reduced, and weathering corrections can be necessary. Standard methods for correcting for surface irregularities are usually not practical where the very-near-surface irregularities are of limited lateral extent. In such circumstances, the GRM smoothing statics method (SSM) is a simple and robust approach, which can facilitate more-accurate estimates of refractor velocities. The GRM SSM generates a smoothing 'statics' correction by subtracting an average of the time-depths computed with a range of XY values from the time-depths computed with a zero XY value (where the XY value is the separation between the receivers used to compute the time-depth). The time-depths to the deeper target refractors do not vary greatly with varying XY values, and therefore an average is much the same as the optimum value. However, the time-depths for the very-near-surface irregularities migrate laterally with increasing XY values and they are substantially reduced with the averaging process. As a result, the time-depth profile averaged over a range of XY values is effectively corrected for the near-surface irregularities. In addition, the time-depths computed with a Bero XY value are the sum of both the near-surface effects and the time-depths to the target refractor. Therefore, their subtraction generates an approximate 'statics' correction, which in turn, is subtracted from the traveltimes The GRM SSM is essentially a smoothing procedure, rather than a deterministic weathering correction approach, and it is most effective with near-surface irregularities of quite limited lateral extent. Model and case studies demonstrate that the GRM SSM substantially improves the reliability in determining detailed seismic velocities in irregular refractors.