• Title/Summary/Keyword: 처짐이론

Search Result 87, Processing Time 0.025 seconds

Effects of Flexural Rigidity of Center Tower in Four-Span Suspension Bridges (4경간 현수교에서의 중앙주탑 휨강성의 영향)

  • Gwon, Sun-Gil;Yoo, Hoon;Choi, Dong-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.49-60
    • /
    • 2014
  • For simple and accurate analysis for behaviors of multi-span suspension bridges which are expected to be frequently constructed as strait-crossing bridges, the deflection theory as the peculiar theory of a suspension bridge can be applied. This paper performs a structural analysis for four-span suspension bridges using the deflection theory. Simply-supported beams with tension are used for girders and the deflections of the beams due to the vertical loads and moments at supports are calculated. The calculation is performed iteratively until the deflections satisfy the compatibility equations of cables. The results of the deflection theory analysis considering tower rigidity are compared with those of the finite element analysis for verification. Importance of the tower rigidity for four-span suspension bridges is confirmed using various compatibility equations of the cable due to variation of the constraint conditions between main cable and top of towers. In addition, the simple parametric analysis for variation of the center tower rigidity is performed.

Measurement and Prediction of Long-term Deflection of Flat Plate Affected by Construction Load (시공하중에 의한 플랫 플레이트의 장기처짐 계측 및 해석)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Jae-Yo;Kim, Yong-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.615-625
    • /
    • 2014
  • Excessive long-term slab deflection caused by construction load is a critical issue for the design of concrete slabs, as long span flat plates become popular for tall buildings. In the present study, the effect of construction load causing early slab cracking on the long-term deflection was theoretically studied. On the basis of the result, a numerical analysis method was developed to predict the long-term deflection of flat plates. In the proposed method, immediate deflection due to slab cracking and long-term effect of creep and shrinkage were considered. To verify the construction load effect, long-term slab deflections were measured in actual flat plate buildings under construction. The results showed that the immediate deflection due to the construction load increased significantly the long-term deflection. The proposed method was used to predict the deflections of the buildings. The results were compared with the measurement results. The predictions agree well with the long-term deflections of flat plate affected by construction load.

Prediction of the Static Deflection Profiles on Suspension Bridge by Using FBG Strain Sensors (FBG 변형률센서를 이용한 현수교의 정적 처짐형상 추정)

  • Cho, Nam-So;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.699-707
    • /
    • 2008
  • For most structural evaluation of bridge integrity, it is very important to measure the geometric profile, which is a major factor representing the global behavior of civil structures, especially bridges. In the past, because of the lack of appropriate methods to measure the deflection profile of bridges on site, the measurement of deflection has been restricted to just a few discrete points along the bridge, and the measuring points have been limited to the locations installed with displacement transducers. Thus, some methods for predicting the static deflection by using fiber optic strain sensors has been applied to simply supported bridges. In this study, a method of estimating the static deflection profile by using strains measured from suspension bridges was proposed. Based on the classical deflection theory of suspension bridges, an equation of deflection profile was derived and applied to obtain the actual deflection profile on Namhae suspension bridge. Field load tests were carried out to measure strains from FBG strain sensors attached inside the stiffening girder of the bridge. The predicted deflection profiles were compared with both precise surveying data and numerical analysis results. Thus, it is found that the equation of predicting the deflection profiles proposed in this study could be applicable to suspension bridges and the FBG strain sensors could be reliable on acquiring the strain data from bridges on site.

Improved Curved Beam Theory for Vibration and Deflection Analyses (진동 및 처짐해석을 위한 개선된 곡선보이론)

  • Kim, Nam-Il;Choi, Jung-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.123-132
    • /
    • 2010
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the displacement field is expressed by introducing displacement parameters defined at the centroid and shear center axes, respectively. Next the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are rigorously derived by degenerating the energies of the elastic continuum to those of curved beam. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by centroid formulation, previous research and ABAQUS's shell elements.

  • PDF

Deflection Behavior of Concrete Members Reinforced with FRP Bars (FRP-보강근 콘크리트 부재의 처짐 거동)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.936-943
    • /
    • 2011
  • The effective moment of inertia revising the expression proposed by Branson has been used in ACI 440.1R-06 design guide for calculating deflections of FRP-reinforced concrete members. However, its adequacy has been questioned by several researchers. The propose of this study is to provide fundamental data for the rational design of deflection by the comparison of the experimental results obtained from twelve specimens with rectangular section and nine specimens with T-shaped section to the theoretical results. As a result, it found that calculated results for specimens with rectangular section were underestimated comparing to test results, while calculated results for specimens with T-shaped section were overestimated comparing to test results.

A Study on the Measurement of Rigidities of Stiffened Plates by Vibration Method (振動法 에 의한 補强平板 의 剛性測定硏究)

  • 김천욱;남준우;원종진;한승봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.174-180
    • /
    • 1985
  • A new measuring technique for the rigidities of stiffened plated is presented. The equations relating the rigidities of stiffened plates and the natural frequencies of a cantilever plate are derived and the rigidities are determined using the measured natural frequencies of the plate. The static deflection tests are conducted for checking the validity of this method. For unstiffened plates the measured rigidities are good agreement with the theoretical values and the experimental results of deflection tests. In the case of stiffened plates the measured rigidities closely matched with the results of deflection tests. It has been also demonstrated that this measuring technique can be utilized in determining the rigidities of arbitrarily stiffened plates.

Study for Curling Control of Plain Concrete in Underground Parking Lot (지하주차장 무근콘크리트 컬링제어를 위한 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.243-249
    • /
    • 2018
  • The study for curling control of plain concrete in underground parking lot was conducted in this study. The shrinkage reducing agent(SRA) was used to minimize the curling deformation of plain concrete in underground parking lot. For the quantitative curling control, the simplified prediction method applying the deflection theory of cantilever beam was proposed too, and the validity of prediction method was examined through the comparison between the experimental values and predictive values. In result, the curling of SRA 1.0% concrete was about 30% less than that of SRA 0.0% concrete, and the possibility of curling estimation by the simplified prediction method was confirmed through the comparison between the experimental values and predictive values.

A Study on Evaluation of Moduli of 3 Layered Flexible Pavement Structures using Deflection Basins (처짐곡선을 이용한 3층 아스팔트 포장 구조체의 물성 추정에 관한 연구)

  • Kim, Soo Il;Kim, Moon Kyum;Yoo, Ji Hyeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.97-107
    • /
    • 1989
  • An inverse self-iterative procedure is developed to estimate layer moduli of 3 layered flexible pavement structures from FWD deflection basins. The theoretical deflection basins of pavement structures obtained by full factorial design are used for the parametric study on the characteristics of deflection basins and the regression analysis. The factorial design is performed for asphalt pavement structures with stabilized base layer and granular base layer, respectively. The initially assumed layer moduli by regression equations and relations between the rate of change of moduli and deflections are used in the procedure to ensure efficiency and accuracy of self-iterative model. The SINELA computer program is used for inverse self-iterative applications to determine theoretical responses. The computer program of this procedure is coded for personal computers and is verified through numerical model tests.

  • PDF

Tip Deflection Analysis of Mobile Habor Crane Supported by Cable and Elastic Bar (케이블과 탄성보로 지지되는 모바일 하버 크레인의 끝단 처짐량 분석)

  • Hwang, Soon-Wook;Han, Ki-Chul;Choi, Eun-Ho;Cho, Jin-Rae;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.283-288
    • /
    • 2010
  • Mobile harbor is characterized by the lightweight compact structure when compared to the conventional above-ground port container crane. A new concept RORI crane system, which was devised for mobile harbor to satisfy the compactness and light weightness, not only can load/unload containers with high speed on sea but can be completely folded at maneuvering mode. This study is concerned with the tip deflection of the horizontal boom of mobile harbor at container loading operation. Both the theoretical method utilizing the Castigliano's theorem and the numerical approach by finite element method are employed, and the reliability of the latter approach is verified through the comparison with the theoretical results. And then, the effect of the initial cable tension on the tip deflection is parametrically examined by the finite element analysis.