• Title/Summary/Keyword: 처짐값

Search Result 153, Processing Time 0.026 seconds

Behavior of Truss Railway Bridge Using Periodic Static and Dynamic Load Tests (주행 열차의 정적 및 동적 재하시험 계측 데이터를 이용한 트러스 철도 교량의 주기적 거동 분석)

  • Jin-Mo Kim;Geonwoo Kim;Si-Hyeong Kim;Dohyeong Kim;Dookie Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.120-129
    • /
    • 2023
  • To evaluate the vertical loads on railway bridges, conventional load tests are typically conducted. However, these tests often entail significant costs and procedural challenges. Railway conditions involve nearly identical load profiles due to standardized rail systems, which may appear straightforward in terms of load conditions. Nevertheless, this study aims to validate load tests conducted under operational train conditions by comparing the results with those obtained from conventional load tests. Additionally, static and dynamic structural behaviors are extracted from the measurement data for evaluation. To ensure the reliability of load testing, this research demonstrates feasibility through comparisons of existing measurement data with sensor attachment locations, train speeds, responses between different rail lines, tendency analysis, selection of impact coefficients, and analysis of natural frequencies. This study applies to the Dongho Railway Bridge and verifies the applicability of the proposed method. Ten operational trains and 44 sensors were deployed on the bridge to measure deformations and deflections during load test intervals, which were then compared with theoretical values. The analysis results indicate good symmetry and overlap of loads, as well as a favorable comparison between static and dynamic load test results. The maximum measured impact coefficient (0.092) was found to be lower than the theoretical impact coefficient (0.327), and the impact influence from live loads was deemed acceptable. The measured natural frequencies approximated the theoretical values, with an average of 2.393Hz compared to the calculated value of 2.415Hz. Based on these results, this paper demonstrates that for evaluating vertical loads, it is possible to measure deformations and deflections of truss railway bridges through load tests under operational train conditions without traffic control, enabling the calculation of response factors for stress adjustments.

Vision-Based Dynamic Motion Measurement of a Floating Structure Using Multiple Targets under Wave Loadings (다중 표적을 이용한 부유식 구조물의 영상 기반 동적 응답 계측)

  • Yi, Jin-Hak;Kim, Jin-Ha;Jeong, Weon-Mu;Chae, Jang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.19-30
    • /
    • 2012
  • Recently, vision-based dynamic deflection measurement techniques have significant interests and are getting more popular owing to development of the high-quality and low-price camcorder and also image processing algorithm. However, there are still several research issues to be improved including the self-vibration of vision device, i.e. camcorder, and the image processing algorithm in device aspect, and also the application area should be extended to measure three dimensional movement of floating structures in application aspect. In this study, vision-based dynamic motion measurement technique using multiple targets is proposed to measure three dimensional dynamic motion of floating structures. And also a new scheme to select threshold value to discriminate the background from the raw image containing targets. The proposed method is applied to measure the dynamic motion of large concrete floating quay in open sea area under several wave conditions, and the results are compared with the measurement results from conventional RTK-GPS(Real Time Kinematics-Global Positioning System) and MRU(Motion Reference Unit).

Difference Edge Acquisition for B-spline Active Contour-Based Face Detection (B-스플라인 능동적 윤곽 기반 얼굴 검출을 위한 차 에지 영상 획득)

  • Kim, Ga-Hyun;Jung, Ho-Gi;Suhr, Jae-Kyu;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.19-27
    • /
    • 2010
  • This paper proposes a method for enhancing detection performance and reducing computational cost when detecting a human face by applying B-spline active contour to the frame difference of consecutive images. Firstly, the method estimates amount of user's motion using kurtosis. If the kurtosis is smaller than a pre-defined threshold, it is considered that the amount of user's motion is insufficient and thus the contour fitting is not applied. Otherwise, the contour fitting is applied by exploiting the fact that the amount of motion is sufficient. Secondly, for the contour fitting, difference edges are detected by combining the distance transformation of the binarized frame difference and the edges of current frame. Lastly, the face is located by assigning the contour fitting process to the detected difference edges. Kurtosis-based motion amount estimation can reduce a computational cost and stabilize the results of the contour fitting. In addition, distance transformation-based difference edge detection can enhance the problems of contour lag and discontinuous difference edges. Experimental results confirm that the proposed method can reduce the face localization error caused by the contour lag and discontinuity of edges, and decrease the computational cost by omitting approximately 39% of the contour fitting.

Size Effect on Flexural Compressive Strength of Reinforced Concrete Beams (철근콘크리트 보의 휨압축강도에 대한 크기효과)

  • 김민수;김진근;이성태;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.934-941
    • /
    • 2002
  • It is important to consider the effect of member size when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of a reinforced concrete (RC) beam was experimentally investigated. For this purpose, a series of beam specimens subjected to four-point loading were tested. More specifically, three different effective depth (d$\approx$15, 30, and 60 cm) reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plane direction is not considered. The test results are curve fitted using least square method (LSM) to obtain parameters for the modified size effect law (MSEL). The analysis results show that the flexural compressive strength and the ultimate strain decrease as the specimen size increases. In the future study, since $\beta_1$ value suggested by design code and ultimate strain change with specimen size variation, a more detailed analysis should be performed. Finally, parameters for MSEL are also suggested.

Impact Properties and Fractography of Structural Materials for LNG Tank at Cryogenic Temperatures (LNG 저장탱크용 재료의 극저온 충격특성과 파면해석)

  • Shin Hyung-Seop;Lee Hae-Moo;Shin Ju-Yeong;Park Jong-Seo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.99-106
    • /
    • 1998
  • In order to investigate the impact properties of structural materials for LNG tank, instrumented Charpy impact tests were carried out at cryogenic temperatures. $9\%$ Ni steel showed a superior fracture resistance because of less degradation in toughness until 77 K. From the load-deflection curve obtained by an instrumented methods it was found that with the decrease of temperature from 173 K to 77 K, the peak load in the curve increased, but the total absorbed energy decreased. In addition, the energy absorbed during the crack growth was larger than one absorbed in the process of crack initiation. In SUS304L material, the energy absorbed in the process of the crack initiation was relatively large, but the energy absorbed in the process of crack growth was small, the behavior of absorbed energy was well agreed with the observations of the fracture surface which showed a relatively smooth fracture surface. The absorbed Charpy impact energy in the case of A5083 alloy was lower as compared with other steels, and some cracks were observed along the crack propagation direction at the fracture surface of 77 K.

  • PDF

Dynamic Behavior of the Prestressed Composite Girder by Modal Tests and Moving Train Analysis (프리스트레스트 강합성 거더의 모달테스트 및 이동 열차하중 해석에 의한 동적거동)

  • Kim, Sung Il;Lee, Pil Goo;Lee, Jung Whee;Yeo, In Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.793-804
    • /
    • 2006
  • Various PSC and steel-concrete composite railway bridges are being developed for short-medium spans with structural and economic efficiency. According to the design concept, the prestressed composite girder bridge has the advantages of being lightweight and having low girder depth, with the capacity for long spans. However, the dynamic behavior under a passing train is one of the critical issues concerning these railway bridges designed with more flexibility. Therefore, it is very important to evaluate the modal parameters before performing dynamic analyses. In this paper, real-scale prestressed composite girders were fabricated as a test model and modal testing was carried out to evaluate modal parameters including natural frequency and modal damping ratio. During the modal testing, a digitally controlled vibration exciter as well as an impact hammer was applied to obtain frequency-response functions, and the modal parameters were also evaluated after the fracture of test models. With application of reliable properties from modal tests, the estimation of dynamic performances of prestressed composite girder railway bridges can be obtained from various parametric studies on dynamic behavior under the passage of a moving train.

The Estimation of Link Travel Time for the Namsan Tunnel #1 using Vehicle Detectors (지점검지체계를 이용한 남산1호터널 구간통행시간 추정)

  • Hong Eunjoo;Kim Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • As Advanced Traveler Information System(ATIS) is the kernel of the Intelligent Transportation System, it is very important how to manage data from traffic information collectors on a road and have at borough grip of the travel time's change quickly and exactly for doing its part. Link travel time can be obtained by two method. One is measured by area detection systems and the other is estimated by point detection systems. Measured travel time by area detection systems has the limitation for real time information because it Is calculated by the probe which has already passed through the link. Estimated travel time by point detection systems is calculated by the data on the same time of each. section, this is, it use the characteristic of the various cars of each section to estimate travel time. For this reason, it has the difference with real travel time. In this study, Artificial Neural Networks is used for estimating link travel time concerned about the relationship with vehicle detector data and link travel time. The method of estimating link travel time are classified according to the kind of input data and the Absolute value of error between the estimated and the real are distributed within 5$\~$15minute over 90 percent with the result of testing the method using the vehicle detector data and AVI data of Namsan Tunnel $\#$1. It also reduces Time lag of the information offered time and draws late delay generation and dissolution.

  • PDF

Study on Measurement Condition Effects of CRP-based Structure Monitoring Techniques for Disaster Response (재해 대응을 위한 CRP기반 시설물 모니터링 기법의 계측조건 영향 분석)

  • Lee, Donghwan;Leem, Junghyun;Park, Jihwan;Yu, Byoungjoon;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.541-547
    • /
    • 2017
  • Climate change has become the main cause of the exacerbation in natural disasters. Social Overhead Capital(SOC) structure needs to be checked for displacement and crack periodically to prevent damage and the collapse caused by natural disaster and ensure the safety. For efficient structure maintenance, the optical image technology is applied to the Structure Health Monitoring(SHM). However, optical image is sensitive to environmental factors. So it is necessary to verify its validity. In this paper, the accuracy of estimating the vertical displacement was verified with respect to environmental condition such as natural light, measurement distance, and the number of image sheets. The result of experiments showed that the effect of natural light on accuracy of estimating vertical displacement was the greatest of all. The measurement angle which was affected by the change in measurement distance was also important to check the vertical displacement. These findings will be taken into account by applying appropriate environmental condition to minimize errors when the bridge was measured by camera. It will also enable the application of optical images to the SHM.

Skin Anti-aging Effects of a Cream Containing Resveratryl Triacetate (RTA) (레스베라트릴 트라이아세테이트(RTA)를 함유한 크림의 피부 노화 완화 효과)

  • Choi, Go Woon;Jeong, Hyun Jin;Seok, Jin Kyung;Baek, Ji Hwoon;Kim, Young Mi;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.161-170
    • /
    • 2018
  • Skin aging degree can be objectively measured using the instrumental analysis. The purpose of this study was to evaluate the anti-aging effects of a cream containing 8000 PPM of resveratryl triacetate (RTA) in the human skin test. Twenty female subjects were given test products twice a day for 8 weeks on the face, and wrinkles, sagging, elasticity, dermis denseness, moisture and brightness were measured every 4 weeks by instrument analysis. After 4 and 8 week-use of the test product, total wrinkle area decreased (5.12%, 4.86%), total wrinkle volume decreased (10.53%, 8.41%), sagging decreased (4.69%, 5.91%), elasticity increased (2.84%, 3.98%), dermis denseness increased (15.65%, 20.80%), water content increased (5.83%, 7.37%), lightness ($L^*$ value) increased (0.79%, 1.07%), and individual typology angle ($ITA^{\circ}$) increased (5.43%, 4.95%)compared with the baseline values before treatments, and all these changes were statistically significant (p < 0.05). No adverse skin reactions were observed in all participants during the study period. This study supports the anti-aging effects of the test product.

Prediction of Transmission Error Using Dynamic Analysis of a Helical Gear (헬리컬기어의 동적해석을 통한 전달오차 예측)

  • Lee, Jeongseok;Yoon, Moonyoung;Boo, Kwangsuk;Kim, Heungseob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1005-1011
    • /
    • 2016
  • The fundamental reason for gear noise is transmission error. Transmission error occurs because of STE (static transmission error) and DTE (dynamic transmission error), while a pair of gears is meshing. These errors are generated by the deflection of the teeth and the friction on the surface of the teeth. In addition, the vibration generated by transmission error leads to excited bearings. The bearings support the shafts, and the noise is radiated after exciting the gear casing. The analysis of the contact stress in helical gear tooth flanks indicates that it is due to impact loading, such as the sudden engagement and disengagement of a gear. Stress analysis is performed for different roll positions, in order to determine the most critical roll angle. Dynamic analysis is performed on this critical roll position, in order to evaluate variation in stresses and tooth contact force, with respect to time. In this study, transmission error analysis was implemented on a spur and helical gear with involute geometry and a modified geometry profile. In addition, in order to evaluate the intensity of impact due to sudden engagement and significant backlash, the impact factor was calculated using the finite element analysis results of static and dynamic maximum bending stresses.