• Title/Summary/Keyword: 처분

Search Result 1,987, Processing Time 0.037 seconds

Significance of In-Situ Stresses in Stability Analysis of Underground Nuclear Waste Disposal Repository (방사성 폐기물 지하처분장의 안정성 분석에 있어서 암반내 초기응력의 역할과 의미)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.26-31
    • /
    • 2007
  • The 11 nuclear power plants have been taking charge of more than 40% of the total electrical power development in Korea. In addition to the existing nuclear power plants at Gori, Wolsung, Youngkwang, etc., the 12 nuclear power plants are expected to be newly established until 2006. So, the 23 nuclear power plants will produce the electric power as much as more than 50% of the national gross production. However the nuclear power plants are inevitably generating the detrimental atomic wastes. Therefore the disposal techniques for the nuclear wastes should be ensured considering a very high safety factor. According to the basic researches in KAERI, the underground disposal repositories are reported to be most favorable for Korea. The KBS-3 disposal system has been strongly suggested by KAERI and this system has a deep tunnel with several disposal boreholes in tunnel floor. The nuclear wastes, which are sealed tightly in a canister, will be disposed in these boreholes. Considering the disposal tunnel in a great depth, the in-situ stress regimes will affect severely the tunnel stability. Consequently the effect of the in-situ stresses on the disposal tunnel and the role of the in-situ stresses in tunnel stability analysis are examined by the numerical studies.

Evaluation on Radioactive Waste Disposal Amount of Kori Unit 1 Reactor Vessel Considering Cutting and Packaging Methods (고리 1호기 원자로 압력용기 절단과 포장 방법에 따른 처분 물량 산정)

  • Choi, Yujeong;Lee, Seong-Cheol;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.123-134
    • /
    • 2016
  • Decommissioning of nuclear power plants has become a big issue in South Korea as some of the nuclear power plants in operation including Kori unit 1 and Wolsung unit 1 are getting old. Recently, Wolsung unit 1 received permission to continue operation while Kori unit 1 will shut down permanently in June 2017. With the consideration of segmentation method and disposal containers, this paper evaluated final disposal amount of radioactive waste generated from decommissioning of the reactor pressure vessel in Kori unit 1 which will be decommissioned as the first in South Korea. The evaluation results indicated that the final disposal amount from the top and bottom heads of the reactor pressure vessel with hemisphere shape decreased as they were cut in smaller more effectively than the cylindrical part of the reactor pressure vessel. It was also investigated that 200 L and 320 L radioactive waste disposal containers used in Kyung-Ju disposal facility had low payload efficiency because of loading weight limitation.

A Conceptual Design on Performance Test Facility of Disposal Cover for the Near Surface Disposal of Low and Intermediate Level Radioactive Waste (중.저준위 방사성폐기물 천층처분을 위한 처분덮개의 성능실증 시험시설 개념설계)

  • 이찬구;박세문;김창락;염유선;이은용
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.245-254
    • /
    • 2001
  • The experimental study on disposal cover through the performance test facility offers reliability in the safety of near surface disposal of low and intermediate level radioactive waste. To ensure the long-term safety of the repository, the impermeability, integrity, resistance to degradation and ease of maintenance might be considered as the basic performance requirement of the disposal cover. considering the difficulties to meet these performance requirement by using single layer, the disposal cover design which is composed of top layer, middle drainage layer and bottom low permeability layer is schemed for the test facility. The water balance of the cover was evaluated by using HELP code. For the long-term monitoring of the soil moisture content and matric potential, TDR probes and tensiometers will be installed in 6 test cells. Each test cell is dimensioned 3$\times$3$\times$3.3m.

  • PDF

A Sensitivity Study on Nuclide Release from the Near-field of a Pyroprocessed Waste Repository System: Part 2. A Deterministic Approach (파이로처리 폐기물 처분 시스템 근계 영역 내 핵종 유출 민감도: 제 2 부 결정론적 접근)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • A parametric sensitivity to the annual exposure dose rate to the farming exposure group has been deterministically carried out for three principal elements identified in the near-field of the pyroprocessed waste repository system as a series study of Part 1 of the coupled paper with the same title. Credit time for both metal and ceramic containers, annual nuclide release rete and the degree of loss of bentonite buffer around the container are selected and investigated deterministically for important nuclides. To this end the A-KRS has been assessed and then compared among each other with the normal, the worst, and the best case scenarios associated with their extreme values these elements could have. All the elements are shown to be sensitive to the results as was in Part 1. Methodology studied through this study and the results are expected to make a good feedback to the repository design.

Simulation of Unsaturated Fluid Flow on the 2nd Phase Facility at the Wolsong LILW Disposal Center (경주 중저준위방폐장 2단계 처분시설의 불포화 환경하에서 침투수 유동 해석)

  • Ha, Jaechul;Lee, Jeonghwan;Yoon, Jeonghyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.219-230
    • /
    • 2017
  • This study was conducted to predict and evaluate the uncertainty of safety after closure of the second phase surface disposal facility of the Gyeongju intermediate and low level repository in Korea. In this study, four scenarios are developed considering both intact and degraded states of multi-layered covers and disposal containers; also, the fluid flow by a rainfall into the disposal facility is simulated. The rainfall conditions are implemented based on the monthly average data of the past 30 years (1985~2014); the simulation period is 300 years, the management period regulated by institutional provisions. As a result of the evaluation of the basic scenario, in which the integrity of both of the containers and the covers is maintained, it was confirmed that penetration of rainfall does not completely saturate the inside of the disposal facility. It is revealed that the multiple cover layers and concrete containers effectively play the role of barrier against the permeation of rainfall.

Rigid Body Dynamic Analysis on the Spent Nuclear Fuel Disposal Canister under Accidental Drop and Impact to the Ground: Theory (사고로 지면으로 추락낙하 충돌하는 고준위폐기물 처분용기에 대한 기구동역학 해석: 이론)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.359-371
    • /
    • 2013
  • This paper is the first paper among two papers which constitute the paper about the rigid body dynamic analysis on the spent nuclear disposal canister under accidental drop and impact on to the ground. This paper performed the general theoretical study on the rigid body dynamic analysis. Through this study the impulsive force which is occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground and required for the structural safety design of the canister is intended to be theoretically formulated. The main content of the theoretical study is about the equation of motion in the multibody dynamics. On the basis of this study the impulsive force which is occurring in the multibody in the case of collision between multibody is theoretically formulated. The application of this theoretically formulated impulsive force to computing the impulsive force occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground is investigated.

A Study on Interim Measures of Commercial Arbitration in China (중국 상사중재에서의 임시적 처분 조치에 관한 연구)

  • Qing-Tang;Hae-Ju Kim;Eun-Ok Park
    • Korea Trade Review
    • /
    • v.48 no.4
    • /
    • pp.67-92
    • /
    • 2023
  • In international commercial arbitration, interim measures play a crucial role in enforcing arbitral awards by prohibiting a party from hiding assets or destroying any evidence which are critical during arbitral proceedings before the arbitral tribunal renders a final award. While Chinese commercial arbitration system acknowledges interim measures, it has faced criticism for perceived deviations from the evolving international arbitration trends. Nevertheless, recent developments indicate that China is actively aligning itself with the global trend in promoting international commercial arbitration, leading to notable changes in interim measures. This paper aims to examine the prevailing international trends of interim measures in commercial arbitration and conduct an analysis of the current status of interim measures in Chinese commercial arbitration by analysing some relevant cases and regulations. By doing so, it can provide practical insights to Korean companies on how to effectively utilize interim measures when they settle their disputes by arbitration with Chinese counterparts.

A Case Study on the Effect of Fault Reactivation on Groundwater Flow around a Hypothetical HLW Repository (Fault Reactivation에 의한 가상 방사성폐기물 처분장 주변 지하수 유동 변화 평가 : 2차원 케이스 스터디)

  • Seo, Eun-Jin;Hwang, Yong-Soo;Han, Ji-Woong
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.307-312
    • /
    • 2006
  • Radionuclide released from corroded container migrates through groundwater flow pathway in the underground rock. Therefore it is important to study the groundwater flow analysis for total system performance assessment of a HLW repository. In this study assuming a geological change of underground rock in future, the two dimensional groundwater flow analysis is done by the NAMMU, the assessment code for groundwater flow in porous media. Assuming the hypothetical repository with the reactivation of fault in the vicinity of it, the effect of change in aperture and permeability by reactivation of fault around a repository on groundwater pathway is studied.

KAERI Underground Research Tunnel (KURT) (한국원자력연구원 지하처분연구시설)

  • Cho, Won-Jin;Kwon, Sang-Ki;Park, Jeong-Hwa;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.239-255
    • /
    • 2007
  • An underground research tunnel is essential to validate the integrity of a high-level waste disposal system, and the safety of geological disposal. In this study, KAERI underground research tunnel(KURT) was constructed in the site of Korea Atomic Energy Research Institute(KAERI). The results of the site investigation and the design of underground tunnel were presented. The procedure for the construction permits and the construction of KURT were described briefly. The in-situ experiments being carried out at KURT were also introduced.

  • PDF

Disposal Approach for Long-lived Low and Intermediate-Level Radioactive Waste (장반감기 중저준위 방사성 폐기물의 국외 처분동향과 처분방안)

  • Park, Jin-Beak;Park, Joo-Wan;Kim, Chang-Lak
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.143-152
    • /
    • 2005
  • There certainly exists the radioactive inventory that exceeds the waste acceptance criteria for final disposal of the low and intermediate-level radioactive waste. In this paper, current disposal status of the long-lived radioactive waste in several nations are summarized and the basic procedures for disposal approach are suggested. With this suggestion, intensive discussion and research activities can hopefully be launched to set down the possible resolutions to dispose of the long-lived radioactive waste.

  • PDF