• Title/Summary/Keyword: 채널 추정 에러

Search Result 68, Processing Time 0.024 seconds

Performance Evaluation of MC-DS-CDMA Transmission Technique using MRRC Antenna Scheme (MRRC 안테나 기법을 이용한 MC-DS-CDMA 전송방식의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.817-823
    • /
    • 2010
  • MC-DS-CDMA is technique where a single data symbol is transmitted at multiple subcarriers which are orthogonal to each other. With this technique, frequency diversity can be achieved. The performance of PSAM MC-DS-CDMA system with the application of MRRC antenna diversity is analyzed. The BER performance of this system over multipath fading environment is evaluated, considering the channel estimation error, carrier frequency offset, and the nonlinear high power amplifier.

Adaptive blind decision feedback equalization using constant modulus and prediction algorithm (CMA와 예측 알고리듬을 이용한 판정궤환 적응 자력등화 기법)

  • 서보석;이재설;이충웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.996-1007
    • /
    • 1996
  • In this paper, a blind adaptation method for a decision feedback equalizer (DFE) is proposed to deal with nominimum phase channels. This equalizer is composed of a linear transversal filter and a prediction error filter which are trained separately using constant modulus and decision feedback prediction algorithms, respectively, during the learnign time. The proposed algorithm guaranetees the DFE to converge to a suboptimal point on the condition that a linear transversal of the proposed scheme is illustrated and the performance is compared with conventional blind equlization algorithms.

  • PDF

Handoff Scheme based on Adaptive Channel Prediction in Cognitive Radio Networks (인지무선네트워크에서 적응적 채널예측에 기반한 핸드오프기법)

  • Lee, Juhyeon;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2389-2396
    • /
    • 2014
  • Spectrum handoff is the process of exchanging progressing data transmission from the current channel to another idle channel. The essential goal of spectrum handoff in CR(Cognitive Radio) networks is to perform consistent data transmission while sustaining performance of ongoing transmission of secondary users. This handoff procedure can cause additional latency that eventually affects on the performance of CR transmission. Channel prediction method is expected to avoid the disruption to primary users and to reduce the handoff latency. In this paper, adaptive channel prediction is proposed to cope with time-varying channel and an adaptive channel prediction based proactive handoff procedure is designed to enhance data transmission performance.

Performance Analysis with Imperfect Channel Estimation in Cooperative Diversity (공조 다이버시티에서의 부정확한 채널 추정을 고려한 성능 분석에 관한 연구)

  • Ro Sang-Min;Hong Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.689-695
    • /
    • 2006
  • This paper focuses on the accurate performance evaluation of cooperative diversity technique with imperfect channel estimates. The channel environment for simulations and performance evaluation is supposed to be the slowly time-varying Rayleigh fading channel. The framework of the performance evaluation is based on the Moment Generating Function(MGF) approach. To apply the effect of this channel estimation error into the performance evaluation, we import an useful Gaussian approximation in formulating the effective noise component and the additive noise. The average BER performance of cooperative diversity with M-PSK and M-QAM is computed as a function of the ratio of the signal to the effective noise based on the approximation. The verification of computed performance is provided with simulations. The evaluated performance matches up to simulation results even in a low SNR region.

WBAN Service Quality Optimization Design Using Error Correction Technique (에러교정기법을 이용한 WBAN 서비스품질 최적화 설계)

  • Lee, Jung-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.657-662
    • /
    • 2019
  • The power consumption of wearable sensors and electrocardiogram regulators should be very low to extend the network lifetime and anticipated QoS( : Quality of Service) control such as error correction and authentication of data processed by WBAN( : Wireless Body Area Network) nodes is important. Therefore, QoS control is the most urgent concern to implement WBAN in health monitoring regulations. For optimal QoS control, we compare the energy efficiency and the average number of transmissions with IEEE 802.15.6 and the error correction method considering energy efficiency. The performance of the proposed error correction technique shows that the energy efficiency and the transmission rate are improved by adjusting the coding rate appropriately using the channel estimation.

MIMO Vector Channel Modeling and Performance Analysis in Underwater Channel Environments (수중 MIMO 벡터 채널 모델링 및 성능 분석)

  • Lee, Deok-Hwan;Ko, Hak-Lim;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.426-431
    • /
    • 2007
  • In this paper we have studied the underwater vector channel modeling for MIMO(Multiple Input Multiple Output) to increase the performance and efficiency for ultrasound communication in underwater channel environments. Also we have analyzed the MIMO techniques using the proposed channel modeling. For underwater MIMO channel modeling. experiments were done in real channel environments and the data were analyzed to estimate parameters such as fading, Doppler, time delay, angle of arrival, and receiving power. These were used for modeling of underwater vector channel modeling for MIMO. Additionally, we have analyzed the performance of MIMO systems using our proposed channel models. As a result we could see that the BER has decreased severely with the same SNR when using the MIMO system.

Synchronization performance optimization using adaptive bandwidth filter and average power controller over DTV system (DTV시스템에서 평균 파워 조절기와 추정 옵셋 변화율에 따른 대역폭 조절 필터를 이용한 동기 성능 최적화)

  • Nam, Wan-Ju;Lee, Sung-Jun;Sohn, Sung-Hwan;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.45-53
    • /
    • 2007
  • To recover transmitted signal perfectly at DTV receiver, we have to acquire carrier frequency synchronization to compensate pilot signal which located in wrong position and rotated phase. Also, we need a symbol timing synchronization to compensate sampling timing error. Conventionally, to synchronize symbol timing, we use Gardner's scheme which used in multi-level signal. Gardner's scheme is well known for its sampling the timing error signal from every symbol and it makes easy to detect and keep timing sync in multi-path channel. In this paper, to discuss the problem when the received power level is out of range and we cannot get synchronization information. With this problem, we use 2 step procedures. First, we put a received signal power compensation block before Garder's timing error detector. Second, adaptive loop filter to get a fast synchronization information and averaging loop filter's output value to reduce the amount of jitter after synchronization in PLL(Phased Locked Loop) circuit which is used to get a carrier frequency synchronization and symbol timing synchronization. Using the averaging value, we can estimate offset. Based on offset changing ratio, we can adapt adaptive loop filter to carrier frequency and symbol timing synchronization circuit.

Distance Estimation Using Convolutional Neural Network in UWB Systems (UWB 시스템에서 합성곱 신경망을 이용한 거리 추정)

  • Nam, Gyeong-Mo;Jung, Tae-Yun;Jung, Sunghun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1290-1297
    • /
    • 2019
  • The paper proposes a distance estimation technique for ultra-wideband (UWB) systems using convolutional neural network (CNN). To estimate the distance from the transmitter and the receiver in the proposed method, 1 dimensional vector consisted of the magnitudes of the received samples is reshaped into a 2 dimensional matrix, and by using this matrix, the distance is estimated through the CNN regressor. The received signal for CNN training is generated by the UWB channel model in the IEEE 802.15.4a, and the CNN model is trained. Next, the received signal for CNN test is generated by filed experiments in indoor environments, and the distance estimation performance is verified. The proposed technique is also compared with the existing threshold based method. According to the results, the proposed CNN based technique is superior to the conventional method and specifically, the proposed method shows 0.6 m root mean square error (RMSE) at distance 10 m while the conventional technique shows much worse 1.6 m RMSE.

An Algorithm of Optimal Training Sequence for Effective 1-D Cluster-Based Sequence Equalizer (효율적인 1차원 클러스터 기반의 시퀀스 등화기를 위한 최적의 훈련 시퀀스 구성 알고리즘)

  • Kang Jee-Hye;Kim Sung-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.996-1004
    • /
    • 2004
  • 1-Dimensional Cluster-Based Sequence Equalizer(1-D CBSE) lessens computational load, compared with the classic maximum likelihood sequence estimation(MLSE) equalizers, and has the superiority in the nonlinear channels. In this paper, we proposed an algorithm of searching for optimal training sequence that estimates the cluster centers instead of time-varying multipath fading channel estimation. The proposed equalizer not only resolved the problems in 1-D CBSE but also improved the bandwidth efficiency using the shorten length of taming sequence to improve bandwidth efficiency. In experiments, the superiority of the new method is demonstrated by comparing conventional 1-D CBSE and related analysis.

Performance Enhancement of Decision Directed SNR Estimation by Correction Scheme of SNR Estimation Error (결정지향 SNR 추정방식에서의 추정오차 보정기법을 통한 SNR 추정성능개선)

  • Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.982-987
    • /
    • 2012
  • In this paper, the SNR estimation error of Decision Directed SNR estimation method in AWGN is investigated, which uses samples received in reference decision region. In communication system receiver, when SNR estimation scheme using error vectors between ideal sample points and received sample points of reference region is adopted, the samples contain incorrectly received samples due to AWGN. Consequently, the mean of estimated reference constellation point is shifted and Decision Directed SNR estimation is inaccurately performed. These effects are explained by modified probability density function and difference between actual SNR and estimated SNR is theoretically derived and quantatively analyzed. It is proved that SNR estimation error obtained through computer simulation is matched up with derived one, and SNR estimation performance is enhanced significantly by adopting suggested correction scheme.