• Title/Summary/Keyword: 채널예측

Search Result 562, Processing Time 0.022 seconds

Fast and Accurate Performance Estimation of Bus Matrix for Multi-Processor System-on-Chip (MPSoC) (멀티 프로세서 시스템-온-칩(MPSoC)을 위한 버스 매트릭스 구조의 빠르고 정확한 성능 예측 기법)

  • Kim, Sung-Chan;Ha, Soon-Hoi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.11
    • /
    • pp.527-539
    • /
    • 2008
  • This paper presents a performance estimation technique based on queuing analysis for on-chip bus matrix architectures of Multi-Processor System-on-Chips(MPSoCs). Previous works relying on time-consuming simulation are not able to explore the vast design space to cope with increasing time-to-market pressure. The proposed technique gives accurate estimation results while achieving faster estimation time than cycle -accurate simulation by order of magnitude. We consider the followings for the modeling of practical memory subsystem: (1) the service time with the general distribution instead of the exponential distribution and (2) multiple-outstanding transactions to achieve high performance. The experimental results show that the proposed analysis technique has the accuracy of 94% on average and much shorter runtime ($10^5$ times faster at least) compared to simulation for the various examples: the synthetic traces and real-time application, 4-channel DVR.

Evaluation of Bubble Size Models for the Prediction of Bubbly Flow with CFD Code (CFD 코드의 기포류 유동 예측을 위한 기포크기모델 평가)

  • Bak, Jin-yeong;Yun, Byong-jo
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • Bubble size is a key parameter for an accurate prediction of bubble behaviours in the multi-dimensional two-phase flow. In the current STAR CCM+ CFD code, a mechanistic bubble size model $S{\gamma}$ is available for the prediction of bubble size in the flow channel. As another model, Yun model is developed based on DEBORA that is subcooled boiling data in high pressure. In this study, numerical simulation for the gas-liquid two-phase flow was conducted to validate and confirm the performance of $S{\gamma}$ model and Yun model, using the commercial CFD code STAR CCM+ ver. 10.02. For this, local bubble models was evaluated against the air-water data from DEDALE experiments (1995) and Hibiki et al. (2001) in the vertical pipe. All numerical results of $S{\gamma}$ model predicted reasonably the two-phase flow parameters and Yun model is needed to be improved for the prediction of air-water flow under low pressure condition.

A Fast Wyner-Ziv Video Decoding Method Using Adaptive LDPCA Frame-based Parity Bit Request Estimation (LDPCA 프레임별 적응적 패리티 요구량 예측을 이용한 고속 위너-지브 복호화 기법)

  • Kim, Man-Jae;Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.259-265
    • /
    • 2012
  • Recently, many research works are focusing on DVC (Distributed Video Coding) system for low complexity encoder. Most DVC systems need feedback channel for parity bit control to achieve the good RD performances, however, this causes the system to have high decoding latency and is considered as one of the most critical problems for real implementation. In order to overcome this problem, this paper proposes an effective distributed video decoding method using adaptive LDPCA frame-based parity bit request estimation. The proposed method applies for the pixel-domain Wyner-Ziv system and exploits the statistical characteristics between adjacent LDPCA frames to estimate adaptively the parity bit request. Through computer simulations, it is shown that the proposed method achieves about 80% of latency reduction compared to the conventional no-estimation DVC system.

Multicast Coverage Prediction in OFDM-Based SFN (OFDM 기반의 SFN 환경에서의 멀티캐스트 커버리지 예측)

  • Jung, Kyung-Goo;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.205-214
    • /
    • 2011
  • In 3rd generation project partnership long term evolution, wireless multicast techniques which send the same data to multiple users under single frequency networks have attracted much attention. In the multicast system, the transmission mode needs to be selected for efficient data transfer while satisfying the multicast coverage requirement. To achieve this, users' channel state information (CSI) should be available at the transmitter. However, it requires too much uplink feedback resource if all the users are allowed to transmit their CSI at all the time. To solve this problem, in this paper, the multicast coverage prediction is suggested. In the proposed algorithm, each user measures its transition probabilities between the success and the fail state of the decoding. Then, it periodically transmits its CSI to the basestation. Using these feedbacks, the basestation can predict the multicast coverage. From the simulation results, we demonstrate that the proposed scheme can predict the multicast system coverage.

The VoIP Capacity Analysis of 802.11 WLANS with Propagation Errors (전파 오류가 빈번한 802.11 무선 랜에서의 VoIP 용량 분석)

  • Jung, Nak-Cheon;Ahn, Jong-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • This paper proposes an analytical model to calculate VoIP (Voice of IP) capacity over wireless LANs with frequent bit errors. Since the traditional analytical models for VoIP capacity have not included the effect of bit errors, simulations ould only evaluate VoIP capacity over erroneous channels. For analytically accurate estimation of VoIP capacity over noisy channels, we extend the conventional model to include the effect of propagation errors, end-to-end delay, voice quality, the waiting time in AP(Access Point). The experiments show that our model predicts the VoIP capacity of a given network within the range from 3% to 9% difference comparing with the simulation results.

Gaussian Interpolation GPSAM Method to Overcome Fast Fading in High Speed Mobile Environments (고속 모바일 환경에서 fast 페이딩 극복을 위한 가우시안 보간 GPSAM 기법)

  • Kim, Jeong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3482-3486
    • /
    • 2013
  • In the case of the Pilot Symbol Assisted Modulation (PSAM) method predicting and compensating amplitude and phases caused on fading channels, there can be severe performance deterioration by Doppler spread on fast fading channels. In this paper, the fading compensation method suggested so as to improve occurring problems as well as analyze them. Doppler spread is the major cause of the bit error rate(BER) performance deterioration. Compared to the existing PSAM method, the more performance deterioration occurs, the larger Doppler spread appears but performance shows well its less $10^{-2}BER$ performance than the existing PSAM method in the suggested method whereas the existing PSAM method has about $10^{-1}BER$ its considerable performance deterioration that caused by Doppler spread within a symbol cycle with the level of delay wave interference.

An efficient multi-view video coding using correlation between multi-view video and depth map (다시점 비디오와 깊이 정보의 상판도를 이용한 효율적인 다시점 비디오 부호화 기법)

  • Bae, Byung-Kyu;Yun, Jung-Hwan;Kim, Dong-Wook;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.259-262
    • /
    • 2008
  • 본 논문에서는 다시점 비디오와 깊이 정보의 상관도를 이용해서 현재 JVT(joint video team)에서 표준화 된 다시점 비디오 부호화 (multi-view video coding : MVC)의 참조 소프트웨어인 JMVM(joint multi-view video model)을 기반으로 하여 효율적인 다시점 비디오 압축 방법을 제안한다. 기존의 일반적인 비디오 부호화 방식은 단일 시점에 대한 비디오 부호화 기술이기 때문에 다시점 비디오 전송을 위해서는 시점 당 각각 전송 채널에 필요하다. 하지만 다시점 비디오 부호화 기법을 이용하게 되면, 단일 전송 채널을 이용하여 전송이 가능하다. 본 논문에서 제안된 방법은 입력된 다시점 입력 영상과 해당 하는 깊이 정보를 이용하여 시점 간의 예측 방법의 효율성을 높였다. 다시점 입력 영상과 깊이 정보의 전역 변이 벡터 (global disparity vector : GDV)의 상관도를 이용하였으며, 다시점 영상과 깊이 정보를 동시에 전송해야 할 경우 복잡도를 낮출 수 있고, 약 $0.01{\sim}0.1dB$의 PSNR 이득을 얻을 수 있다.

  • PDF

Compatibility between LTE Cellular Systems and WLAN (LTE 셀룰라 시스템과 무선랜의 양립성 분석)

  • Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.171-178
    • /
    • 2015
  • 3GPP long-term evolution(LTE) band 2.3~2.4 GHz is adjacent to 2.4~2.5 GHz band for WLAN, and therefore compatibility study of the two systems is desirable. We propose a dynamic system simulation methodology to investigate the effect of WLAN interference on LTE systems. As capturing space/time/frequency changes in system parameters, the dynamic system simulation can exactly predict real system performance. Using the proposed methodology, we obtain LTE downlink throughput loss for the frequency separation between the two systems. Throughput loss under 1 % is obtained from guard band over 11 MHz(single channel allocation) or 10 MHz(three channel allocation).

Improvement of Resource Utilization by Dynamic Spectrum Hole Grouping in Wideband Spectrum Cognitive Wireless Networks (광대역 스펙트럼 인지 무선망에서 동적 스펙트럼홀 그룹핑에 의한 자원이용률 향상)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2020
  • In this paper, we propose a dynamic spectrum hole grouping method that changes the grouping range of spectrum hole according to the resources amount required by secondary users in wideband spectrum cognitive wireless networks, and then the proposed method is applied to channel allocation for the secondary user service. The proposed method can improve waste of resources in the existing static spectrum hole grouping in virtue of grouping dynamically as much the predicted spectrum holes resources as secondary users require. Simulation results show that channel allocation method with the proposed dynamic grouping outperforms that with the static grouping method in resources utilization under acceptable secondary user service performance.

RF Modeling of Silicon Nanowire MOSFETs (실리콘 나노와이어 MOSFET의 고주파 모델링)

  • Kang, In-Man
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.9
    • /
    • pp.24-29
    • /
    • 2010
  • This paper presents the RF modeling for silicon nanowire MOSFET with 30 nm channel length and 5 nm channel radius. Equations for analytical parameter extraction are derived by analysis of Y-parameter. Accuracies of the new model and extracted parameters have been verified by 3-dimensional device simulation data up to 100 GHz. The model verifications are performed under conditions of saturation region ($V_{gs}$ = $_{ds}$ = 1 V) and linear region ($V_{gs}$ = 1 V, $V_{ds}$ = 0.5 V). The RMS modeling error of Y-parameters was calculated to be 1 %.