최근 학술문헌이 급격하게 증가함에 따라, 학술문헌간의 연결성 및 메타데이터 추출 등의 핵심 자원으로서 활용할 수 있는 참고문헌에 대한 활용 연구가 진행되고 있다. 본 연구에서는 국내 학술지의 참고문헌이 가진 각 메타데이터를 자동적으로 인식하여 추출할 수 있는 참고문헌 메타데이터 인식에 대하여, 연속적 레이블링 방법론을 기반으로 접근한다. 심층학습 기술 중 연속적 레이블링에 우수한 성능을 보이고 있는 Bidirectional GRU-GRU CRF 모델을 기반으로 참고문헌 메타데이터 인식에 적용하였으며, 2010년 이후의 10종의 학술지내의 144,786건의 논문을 활용하여 추출한 169,668건의 참고문헌을 가공하여 실험하였다. 실험 결과, 실험집합에 대하여 F1 점수 97.21%의 우수한 성능을 보였다.
본 연구는 단행본, 학술지, 보고서 등 다양한 종류의 발간물로 구성된 연구보고서의 참고문헌 데이터베이스를 효율적으로 구축하기 위한 것으로 딥러닝 언어 모델을 이용하여 참고문헌의 자동추출 성능을 비교 분석하고자 한다. 연구보고서는 학술지와는 다르게 기관마다 양식이 상이하여 참고문헌 자동추출에 어려움이 있다. 본 연구에서는 참고문헌 자동추출에 널리 사용되는 연구인 메타데이터 추출과 더불어 참고문헌과 참고문헌이 아닌 문구가 섞여 있는 환경에서 참고문헌만을 분리해내는 원문 분리 연구를 통해 이 문제를 해결하였다. 자동 추출 모델을 구축하기 위해 특정 연구기관의 연구보고서 내 참고문헌셋, 학술지 유형의 참고문헌셋, 학술지 참고문헌과 비참고문헌 문구를 병합한 데이터셋을 구성했고, 딥러닝 언어 모델인 RoBERTa+CRF와 ChatGPT를 학습시켜 메타데이터 추출과 자료유형 구분 및 원문 분리 성능을 측정하였다. 그 결과 F1-score 기준 메타데이터 추출 최대 95.41%, 자료유형 구분 및 원문 분리 최대 98.91% 성능을 달성하는 등 유의미한 결과를 얻었다. 이를 통해 비참고문헌 문구가 포함된 연구보고서의 참고문헌 추출에 대한 딥러닝 언어 모델과 데이터셋 유형별 참고문헌 구축 방향을 제안하였다.
서지정보는 연구 주제의 최신 동향의 인지와 유용성을 검증하는 데에 참고할 수 있다. 즉, 각자 연구자들이 필요로 하는 문헌에 신속하게 접근하기 위해서는 학술논문에서 저자 정보, 요약, 초록, 참고문헌 등을 쉬운 방법으로 파악해야 한다. 그러나, 현재 출판되는 PDF 형식의 전자 학술논문은 출판 주체별로 고유한 양식을 띄고 있어서, 몇몇 특징에 의한 규칙 기반 추출법으로는 수많은 문헌에서 목표 정보를 추출하여 요약된 서지사항으로 자동 생성하기 어렵다. 이에 본 연구는 학술논문 서지사항 자동 생성에 있어서 양식의 다양성으로 인한 메타데이터 자동 추출의 난점을 극복할 방법을 제안한다. 제안하는 모델은 서지사항이 주로 기술되는 학술논문의 첫 페이지에서 목표 영역과 본문의 시작점을 구분할 수 있는 심층신경망 기반 모델과 앞의 모델로 추출된 서지사항을 상세한 메타데이터로 분류하고 재생성하는 규칙 기반 모델로 구성된다. 제안하는 모델은 참고문헌 요약정보를 생성하는 모델도 포함하는데, 본문의 말미와 참고문헌 시작점의 분리, 그리고 개별 참고문헌 추출을 규칙 기반 방법으로 진행하고, 추출한 각개 참고문헌의 서지정보를 분류하는 데에 심층신경망을 이용하도록 구성하였다. 추가로, 논문 자체의 서지정보를 전후처리 없이 추출/생성하는 모델의 가능성을 확인하기 위하여 참고문헌 영역까지 아우르는 모델을 구축하여 비교 실험을 진행하였다. 실험 결과 본 논문에서 제안하는 방식이 서지정보를 전후처리 하지 않고 진행한 비교 실험에 비하여 더 높은 성능을 보였다.
본 연구에서는 사전학습 된 언어 모델을 기반으로 양방향 게이트 순환 유닛 모델과 조건부 랜덤 필드 모델을 활용하여 참고문헌을 구성하는 메타데이터를 자동으로 인식하기 위한 연구를 진행하였다. 실험 집단은 2018년에 발행된 학술지 40종을 대상으로 수집한 PDF 형식의 학술문헌 53,562건을 규칙 기반으로 분석하여 추출한 참고문헌 161,315개이다. 실험 집합을 구축하기 위하여 PDF 형식의 학술 문헌에서 참고문헌을 분석하여 참고문헌의 메타데이터를 자동으로 추출하는 연구를 함께 진행하였다. 본 연구를 통하여 가장 높은 성능을 나타낸 언어 모델을 파악하였으며 해당 모델을 대상으로 추가 실험을 진행하여 학습 집합의 규모에 따른 인식 성능을 비교하고 마지막으로 메타데이터별 성능을 확인하였다.
본 논문에서는 최근 인터넷 상에서 표준 공통 포맷으로 대두되고 있는 XML을 이용하여 웹 기반 원격 교육 시스템에서 강의 내용에 참조도리 참고문헌 지원 시스템을 설계하고 구현하였다. Three-tier 환경에서 구현한 이 시스템은 middle-tier인 웹 서버에서 데이터베이스에 저장된 참고문헌을 XML 데이터로 변환하여 효과적으로 처리함으로써 서버의 부하를 감소시키며 이것은 성능 향상으로 이어져 학습자에게 더 나은 속도로 원격 교육의 참고문헌 정보서비스를 제공할 수 있다. 또한 동적으로 서버와 상호작용 가능하도록 학습자가 c마고 문헌의 유익함 정도를 매긴 등급 점수 계산에 직접 참여시켜 그 결과를 볼 수 있도록 하여 학습 의욕을 더욱 고취시킬 수 있다. 앞으로 웹기반 원격교육의 참고문헌 지원 시스템은 세계 각 대학이나 연구소에 분산되어 있는 여러 데이터 소스로부터 필요한 정보만을 실시간으로 추출하여 수집, 통합, 통계 처리할 수 있도록 확장될 수 있을 것이다.
인용 레코드 추출은 인용 색인 구축의 모든 프로세스 입력으로 사용되기 때문에 이후의 과정에 미칠 수 있는 부작용을 고려해서 최대한 정확한 정보가 추출되어야 한다. 본 논문에서는 수집한 논문의 참고문헌 영역을 인식하고 이를 참고문헌 영역 내의 특징들을 이용하여 인용 레코드를 추출하는 템플릿 기반 인용 레코드 추출을 제안한다. 제안된 추출 방법은 기존 방법보다 18% 성능이 증가했으며 전체 인용 레코드에 대한 추출성능은 0.98(F1)의 성능을 보인다. 이는 향후 논문 저장소에서 논문을 대상으로 영역 인식을 통한 정보 추출에 유용하게 활용될 수 있으리라 기대된다.
서로 다른 정보자원 간의 연결을 의미하는 참조연계 서비스를 위해서는 참고문헌 데이터베이스 구축과 식별자 매칭 작업이 필요하다. CrossRef, PubMed, Web Of Science 등의 많은 해외 기관들은 Inera의 eXstyles, Parity Computings의 Reference Extractor 등의 자동화 도구들을 이용하여 DOI, PMID 등의 식별자를 기반으로 하는 참조연계 체제를 구축하였다. 국내에서도 한국과학기술정보연구원, 한국연구재단 등의 여러 기관에서 참고문헌 데이터베이스를 구축하고 있다. 그러나 각 단체별로 채택하고 있는 다양한 참고문헌 기술 형식 때문에 망라적인 데이터베이스 구축은 많은 어려움에 직면해 있다. 이에 참고문헌을 자동으로 파싱하여 메타데이터를 추출하고, DOI, PMID, KOI의 식별자를 매칭하는 Citation Matcher 시스템을 개발하여 참고문헌 데이터베이스 구축의 효율성을 향상시키고자 한다.
학문의 발전과 주제의 다양화로 인하여 각계의 연구자들은 자신에게 필요한 정보를 정확하게 찾을 필요성이 커지고 있다. 그리하여 본 논문에서는 효율적인 참고문헌 추출 방법으로 중복된 참고문헌을 비교 분석하여 자동으로 매핑해주는 시스템을 구축하고, 한의학 사전을 통한 한자의 오타를 교정할 수 있는 방법을 연구하였다. 이러한 방법을 적용함으로써 참고문헌의 중복입력과 한자오류를 개선할 수 있었다.
전문데이터베이스는 원문의 접근가능성과 전문탐색의 장점으로 인해 최근 급속하게 발전하고 있다. 그러나 이제까지 대부분의 전문데이터베이스는 문헌의 구조를 고려하지 않고 본문의 문자열에서 자동추출한 색인어를 대상으로 비통제탐색방법을 사용하여 왔으므로 효율적이고 다양한 검색방법을 적용하기 어려웠다. 본 연구에서는 SGML을 이용하여 문헌을 구조화하고 이를 이용한 색인시스템을 설계함으로써, 문헌구조를 이용한 다양한 검색이 가능하도록 하였다. 이를 위해 논문을 대상으로 하여 문헌의 구조를 분석하고, 주요 문헌요소인 초록, 목차, 본문, 참고문헌의 특성을 색인에 반영하였다. 색인시스템은 문헌요소를 태그와 텍스트데이터로 분석하여 색인하는 일차색인과, 일차색인에 의해 만들어진 문헌요소테이블과 내용데이터파일을 이용하여 주요 문헌요소를 색인한 이차색인으로 구성된다.
많은 연구들 가운데 살펴볼 가치가 있는 대상을 찾아 제시해주는 문헌기반 발견의 접근법은 연구자들에게 매우 유용할 것이다. 문헌기반 발견 연구의 대표 이론인 Swanson의 ABC 모델은 기존에 검증되지 않은 개체들의 관계를 연구할 것을 제안해 준다. 본 연구는 Swanson의 ABC 모델에 인용 정보를 고려하여 유의한 관계에 있는 개체들을 더 효율적으로 찾아내고자 하였다. 수집 논문들의 참고문헌 목록에서 인용 정보를 확인하고 논문의 표제와 초록을 대상으로 텍스트 마이닝 기법으로 중요한 단어들을 추출하였다. Swanson의 연구들 중 어유와 레이노드 질병 및 증상의 관계를 재현하였으며 기존의 접근법으로 확인되는 개체들과 어떤 차이가 있는지 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.