Acknowledgement
본 연구는 정보통신정책연구원 2023년도 정보자료 운영사업의 지원을 받아 수행되었음.
References
- Ji, Seon-yeong & Choi, Sung-pil (2021). A study on recognition of citation metadata using bidirectional GRU-CRF model based on pre-trained language model. Journal of the Korean Society for information Management, 38(1), 221-242. https://doi.org/10.3743/KOSIM.2021.38.1.221
- Lee, Kangsandajeong, Lee, Hyejin, & Hyun, Mihwan (2022). A study on national r&d report reference technological improvement. Journal of the Korea Convergence Society, 13(1), 31-42. https://doi.org/10.15207/JKCS.2022.13.01.031
- Besagni, D., Belaid, A., & Benet, N. (2003). A segmentation method for bibliographic references by contextual tagging of fields. Seventh International Conference on Document Analysis and Recognition, 384-388. https://doi.org/10.1109/ICDAR.2003.1227694
- Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377. https://doi.org/10.1002/asi.20317
- Choi, W., Yoon, H. M., Hyun, M. H., Lee, H. J., Seol, J. W., Lee, K. D., Yoon, Y. J., & Kong, H. (2023). Building an annotated corpus for automatic metadata extraction from multilingual journal article references. PloS one, 18(1), e0280637. https://doi.org/10.1371/journal.pone.0280637
- Councill, I., Giles, C., & Kan, M. (2008). ParsCit: an Open-source CRF Reference String Parsing Package. LREC, 8, 661-667.
- Dai, Z., Wang, X., Ni, P., Li, Y., Li, G., & Bai, X. (2019). Named entity recognition using BERT BiLSTM CRF for Chinese electronic health records. 2019 12th international congress on image and signal processing, biomedical engineering and informatics, 1-5. https://doi.org/10.1109/CISP-BMEI48845.2019.8965823
- Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. https://doi.org/10.48550/arXiv.1810.04805
- Fritzler, A., Logacheva, V., & Kretov, M. (2019). Few-shot classification in named entity recognition task. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, 993-1000. https://doi.org/10.1145/3297280.3297378
- Gonzalez-Gallardo, C., Boros, E., Girdhar, N., Hamdi, A., Moreno, J., & Doucet, A. (2023). Yes but.. Can ChatGPT Identify Entities in Historical Documents?. https://doi.org/10.48550/arXiv.2303.17322
- Hetzner, E. (2008). A simple method for citation metadata extraction using hidden markov models. Proceedings of the 8th ACM/IEEE-CS joint conference on Digital libraries, 280-284. https://doi.org/10.1145/1378889.1378937
- Hollingsworth, B., Lewin, I., & Tidhar, D. (2005). Retrieving hierarchical text structure from typeset scientific articles: a prerequisite for e-science text mining. Proc. of the 4th UK E-Science All Hands Meeting, 67-273.
- Hu, Y., Ameer, I., Zuo, X., Peng, X., Zhou, Y., Li, Z., Li, Y., Li, J., Jiang, X., & Xu, H. (2023). Zero-shot Clinical Entity Recognition using ChatGPT. https://doi.org/10.48550/arXiv.2303.16416
- Huang, I.., Ho, J., Kao, H., & Lin, W. (2004). Extracting citation metadata from online publication lists using BLAST. Advances in Knowledge Discovery and Data Mining: 8th Pacific-Asia Conference, 539-548. https://doi.org/10.1007/978-3-540-24775-3_64
- Kim, J., Choi, N., Lim, S., Kim, J., Chung, S., Woo, H., Song, M., & Choi, J. D. (2021). Analysis of Zero-Shot Crosslingual Learning between English and Korean for Named Entity Recognition. Proceedings of the 1st Workshop on Multilingual Representation Learning, 224-237. https://doi.org/10.18653/v1/2021.mrl-1.19
- Korea Institute of Science and Technology Information (2022). DeepData-REFMETA Version 1.0. http://doi.org/10.23057/47
- Lauscher, A., Ravishankar, V., Vulic, I., & Glavas, G. (2020). From zero to hero: on the limitations of zero-shot cross-lingual transfer with multilingual transformers. https://doi.org/10.48550/arXiv.2005.00633
- Liu, X., Chen, H., & Xia, W. (2022). Overview of named entity recognition. Journal of Contemporary Educational Research, 6(5), 65-68. https://doi.org/10.26689/jcer.v6i5.3958
- Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. https://doi.org/10.48550/arXiv.1907.11692
- Lopez, P. (2009). GROBID: Combining automatic bibliographic data recognition and term extraction for scholarship publications. Research and Advanced Technology for Digital Libraries: 13th European Conference, 473-474. https://doi.org/10.1007/978-3-642-04346-8_62
- OpenAI (2022). Introducing ChatGPT. Available: https://openai.com/blog/chatgpt/
- Park, S., Moon, J., Kim, S., Cho, W. I., Han, J., Park, J., Song, C., Kim, J., Song, Y., Oh, T., Lee, J., Oh, J., Lyu, S., Jeong, Y., Lee, I., Seo, S., Lee, D., Kim, H., Lee, M., Jang, S., Do, S., Kim, S., Lim, K., Lee, J., Park, K., Shin, J., Kim, S., Park, L., Oh, A., Ha, J., & Cho, K. (2021). Klue: Korean Language Understanding Evaluation. https://doi.org/10.48550/arXiv.2105.09680
- Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
- Rodrigues A. D., Colavizza, G., & Kaplan, F. (2018). Deep reference mining from scholarly literature in the arts and humanities. Frontiers in Research Metrics and Analytics, 21. https://doi.org/10.3389/frma.2018.00021
- Segura-Bedmar, I., Martinez Fernandez, P., & Herrero-Zazo, M. (2013). Semeval-2013 task 9: Extraction of drug-drug interactions from biomedical texts (ddiextraction 2013). Association for Computational Linguistics, 341-350.
- Souza, F., Nogueira, R., & Lotufo, R. (2019). Portuguese named entity recognition using BERTCRF. https://doi.org/10.48550/arXiv.1909.10649
- Tkaczyk, D., Szostek, P., Fedoryszak, M., Dendek, P. J., & Bolikowski, L. (2015). CERMINE: automatic extraction of structured metadata from scientific literature. International Journal on Document Analysis and Recognition, 18, 317-335. https://doi.org/10.1007/s10032-015-0249-8
- Van Eck, N. & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3
- Voskuil, K. & Verberne, S. (2021). Improving reference mining in patents with BERT. https://doi.org/10.48550/arXiv.2101.01039
- Wang, S., Sun, X., Li, X., Ouyang, R., Wu, F., Zhang, T., Li, J., & Wang, G. (2023). GPT-NER: Named Entity Recognition via Large Language Models. https://doi.org/10.48550/arXiv.2304.10428
- Wei, X., Cui, X., Cheng, N., Wang, X., Zhang, X., Huang, S., Xie, P., Xu, J., Chen, Y., Zhang, M., Jiang, Y., & Han, W. (2023). Zero-shot information extraction via chatting with chatgpt. https://doi.org/10.48550/arXiv.2302.10205
- White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. (2023). A prompt pattern catalog to enhance prompt engineering with chatgpt. https://doi.org/10.48550/arXiv.2302.11382
- Wu, Y., Huang, J., Xu, C., Zheng, H., Zhang, L., & Wan, J. (2021). Research on named entity recognition of electronic medical records based on roberta and radical-level feature. Wireless Communications and Mobile Computing, 2021, 1-10. https://doi.org/10.1155/2021/2489754
- Yang, Y. & Katiyar, A. (2020). Simple and effective few-shot named entity recognition with structured nearest neighbor learning. https://doi.org/10.48550/arXiv.2010.02405
- Zhang, X., Zou, J., Le, D. X., & Thoma, G. R. (2011). A structural SVM approach for reference parsing. BMC bioinformatics, 12, 1-7. https://doi.org/10.1186/1471-2105-12-S3-S7