• Title/Summary/Keyword: 착용센서

Search Result 231, Processing Time 0.024 seconds

Wireless Wearable GRF Sensing System for Continuous Measurements (연속적 데이터 획득을 위한 착용형 무선 지면 반력 측정 시스템)

  • Lee, Dongkwan;Jeong, Yongrok;Gu, Gwang Min;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.285-292
    • /
    • 2015
  • This paper presents a wireless ground reaction force (GRF) sensing system for ambulatory GRF recording. The system is largely divided into three parts: force sensing modules based on optical sensor, outsole type frame, and embedded system for wireless communication. The force sensing module has advantages of the low height, robustness to the moment interference, and stable response in long term use. In simulation study, the strain and stress properties were examined to satisfy the requirements of the GRF sensing system. Four sensing modules were mounted on the toe, ball, and heel of foot shaped frame, respectively. The GRF signals were extracted using Micrpcontroller unit and transferred to the smart phone via Bluetooth communication. We measured the GRF during the normal walking for the validation of the continuous recording capability. The recorded GRF was comparable to the off the shelf stationary force plate.

Wearable based Electrocardiogram Sensing Clothes for Monitoring of Vital Signal (생체신호 측정을 위한 웨어러블 기반의 심전도 측정 의복)

  • Yu, Ki-Youp;Han, Ki-Tae;Kim, Ju-Hyun;Kim, Jong-Hun;Chung, Kyung-Yong;Lee, Jung-Hyun
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.277-278
    • /
    • 2009
  • 차세대 하이테크 스마트 의류는 복합 차원에서의 감성적인 요소를 섬유 패션기술에 IT융합 기술을 이용하여 제공하고 있다. 생체신호를 이용한 감성은 모호하여 정량적이고 객관적인 측정이 어렵고, 그 표현도 제한된 감성 어휘에 의하여 나타나기 때문에 구체적으로 파악하는 것은 어려운 일이다. 이를 위하여 제품의 기능적 측면뿐만 아니라 정서적 감정과 선호도가 반영된 제품의 설계나 디자인 또한 요구되고 있다. 본 논문에서는 생체신호 측정을 위한 웨어러블 기반의 심전도 측정 의복을 제안하였다. 착용자가 평소 자주 입는 티셔츠를 응용하여 답답해하거나 불편하지 않게 제작하고 소매 형태로 신축성있는 소재를 사용한다. 인체의 형태에 따라 의복과 바이오센서의 전극이 안정적으로 밀착될 수 있도록 고탄력 밴드를 이용하여 일자형으로 제작하였다. 심전도 측정 의복을 착용에 의해 수집된 심전도 ECG 파형을 수집하고 심박변화율을 계산하는 시뮬레이션을 개발한다.

Gait Type Classification Based on Kinematic Factors of Gait for Exoskeleton Robot Recognition (외골격 로봇의 동작인식을 위한 보행의 운동학적 요인을 이용한 보행유형 분류)

  • Cho, Jaehoon;Bong, wonwoo;Kim, donghun;Choi, Hyeonki
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.129-136
    • /
    • 2017
  • The exoskeleton robot is a technology developed to be used in various fields such as military, industry and medical treatment. The exoskeleton robot works by sensing the movement of the wearer. By recognizing the wearer's daily activities, the exoskeleton robot can assist the wearer quickly and efficiently utilize the system. In this study, LDA, QDA, and kNN are used to classify gait types through kinetic data obtained from subjects. Walking was selected from general walking and stair walking which are mainly performed in daily life. Seven IMUs sensors were attached to the subject at the predetermined positions to measure kinematic factors. As a result, LDA was classified as 78.42%, QDA as 86.16%, and kNN as 87.10% ~ 94.49% according to the value of k.

Design and Implementation of a Sensor Technology-based Safety Shoe Recognition System to Prevent Safety Accidents (안전사고 예방을 위한 센서 기술 기반 안전화 인식 시스템 설계 및 구현)

  • Kyoung-Jin Oh;Jeong-Min Park;Kwang-Jin, Kwak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.163-170
    • /
    • 2023
  • With the introduction of the law regarding severe penalties for major accidents, employers, management executives, and corporations have significantly increased the number of safety managers and invested extensively in acquiring ISO certifications to prevent accidents in industrial sites. Moreover, the implementation of the Smart Safety Management System (SSMS) has facilitated the management of personnel and safety equipment. While IoT-based management systems have been applied to safety gear such as helmets, safety harnesses, and protective clothing, the responsibility for safety shoes still primarily lies with on-site managers and individuals, leaving a vulnerability to accidents. In this study, we aim to implement a Raspberry Pi-based sensor device to proactively detect workers' safety shoe usage upon entering the site. The goal is to confirm the usage of safety shoes and prevent accidents that may occur due to non-compliance with safety shoes regulations.

Development of a Squat Angle Measurement System using an Inertial Sensor (관성 센서기반 스쿼트 각도 측정 융합 시스템 개발)

  • Joo, Hyo-Sung;Woo, Ji-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.355-361
    • /
    • 2020
  • The squat is an exercise that can effectively improve the muscle strength of the lower body, which can be performed in a variety of places without restrictions on places including homes. However, injuries due to incorrect motion or excessive angles are frequently occurring. In this study, we developed a single sensor-based squat angle measurement system that can inform the squat angle according to the correct motion during the squat exercise. The sensor module, including the acceleration sensor and the gyro sensor, is attached to the user's thigh. The squat angle was calculated using the complementary filter complementing the pros and cons of acceleration and gyro sensor. It was found that the calculated squat angle showed the proper correlation compared to the squat angle measured by a goniometer, and the influence of the coefficient of the complementary filter on the accuracy was evaluated.

A 3D Posture Measuring and Display System for Hemiplegic Patients (편마비 환자를 위한 3차원 보행 자세 측정 및 디스플레이 시스템)

  • Hwang, Yong-Ha;Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.119-127
    • /
    • 2014
  • TIn this paper, Hemiplegic patients have gait characteristics different from normal persons. This paper presents a posture measuring and display system reflecting their characteristics. Patients wear 3 sensor modules on thigh, calf and foot. To enhance measuring precision of each sensor module, 3D accelerometer and 3D gyroscope are combined. Gait posture is displayed in 3D by modeling thigh, calf and foot as connected 3D objects based on data of the sensor modules. For convenience in inspecting unusual gait posture of hemiplegic patients, any view angle of the 3D display can be selected. In addition, the current gait phase of RLA(Rancho Los Amigos) gait cycle is determined and displayed in real-time by utilizing the posture information, The phase sequence and duration of each phase can be used in evaluating gait quality of patients.

A Time Synchronization Protocol for Wireless Body Sensor Networks (무선 인체 센서 네트워크용 시각 동기화 프로토콜)

  • Bae, Shi-Kyu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.6
    • /
    • pp.127-134
    • /
    • 2016
  • WBSN (Wireless Body Sensor Network), also called WBAN (Wireless Body Area Networks) generally, is a kind of WSN (Wireless Sensor Network) applications, which is composed of the various sensor nodes residing in human body embodied or in wearable way. The measured data at each sensor node in WBSN requires being synchronized at sink node for exact analysis for status of human body, which is like WSN. Although many time synchronization protocols for WSN has been already developed, they are not appropriate to WBSN. In this paper, a new time synchronization protocol for WBSN considering the characteristics of WBSN is proposed. The proposed scheme is not only simple, but also consumes less power, leading to increasing network life time. We will show that the proposed scheme is appropriate to WBSN by evaluating its performance by simulation.

A MEMS-Based Finger Wearable Computer Input Devices (MEMS 기반 손가락 착용형 컴퓨터 입력장치)

  • Kim, Chang-su;Jung, Se-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1103-1108
    • /
    • 2016
  • The development of a variety of sensor technology, users smart phone, the use of motion recognition apparatus such as a console game machines is increasing. It tends to user needs motion recognition-based input device are increasing. Existing motion recognition mouse is equipped with a modified form of the mouse button on the outside and serves as a wheel mouse left and right buttons. Existing motion recognition mouse is to manufacture a small, there is a difficulty to operate the button. It is to apply the motion recognition technology the motion recognition technology is used only pointing the cursor there is a limit. In this paper, use of MEMS-based motion recognition sensor, the body of the two-point operation data by recognizing the operation of the (thumb and forefinger) and generating a control signal, followed by studies on the generated control signal to a wireless transmitting computer input device.

Real-Time Step Count Detection Algorithm Using a Tri-Axial Accelerometer (3축 가속도 센서를 이용한 실시간 걸음 수 검출 알고리즘)

  • Kim, Yun-Kyung;Kim, Sung-Mok;Lho, Hyung-Suk;Cho, We-Duke
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.17-26
    • /
    • 2011
  • We have developed a wearable device that can convert sensor data into real-time step counts. Sensor data on gait were acquired using a triaxial accelerometer. A test was performed according to a test protocol for different walking speeds, e.g., slow walking, walking, fast walking, slow running, running, and fast running. Each test was carried out for 36 min on a treadmill with the participant wearing an Actical device, and the device developed in this study. The signal vector magnitude (SVM) was used to process the X, Y, and Z values output by the triaxial accelerometer into one representative value. In addition, for accurate step-count detection, we used three algorithms: an heuristic algorithm (HA), the adaptive threshold algorithm (ATA), and the adaptive locking period algorithm (ALPA). The recognition rate of our algorithm was 97.34% better than that of the Actical device(91.74%) by 5.6%.

Study on Wireless Control of a Board Robot Using an IMU sensor (IMU센서를 이용한 보드로봇의 무선제어 연구)

  • Ryu, Jaemyung;Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 2014
  • This study presents the remote control of a board robot using an IMU sensor based on Bluetooth communication. The board robot is a kind of riding robot controlled throng wireless communication by a user. The user wears the proposed IMU sensor controller, and changes a direction of the robot by the angles of IMU sensor. Bluetooth is used for wireless communication between the board robot and its user. The IMU sensor in the remote controller is used for recognition of a number of actions, which are measured as analog signals. The user actions have five commands ('1'right '2'neutrality '3'left '4'operation '5'stop), which are transmitted from the user to the board robot through Bluetooth communication. Experimental results show that proposed IMU interface can effectively control the board robot.