• Title/Summary/Keyword: 차세대 하역시스템

Search Result 6, Processing Time 0.018 seconds

Performance Evaluation of the Next Generation Stevedoring System at Container Terminal (컨테이너 터미널의 차세대 하역시스템 성능평가)

  • Shin, Jae-Yeong;Ha, Tae-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.253-261
    • /
    • 2007
  • This study aims at newly constructing and evaluating performance of the stevedoring equipment systems in terminals. The stevedoring equipments used in conventional terminals are insufficient in flexibility in their functions or design structure, and most of the stevedoring systems based on such equipments have conventional design, therefore, limited in improving the productivity of terminals both in performance and functionality. The stevedoring equipment systems in terminals, in general, can be subdivided into 4 subsystems of quay, transportation, yard, and gate system, which carry out loading and unloading works with proper facilities and equipments. In this study, a design of next generation stevedoring equipment system comprised of various stevedoring equipments which have superior performance and functionalities to the conventional equipments was proposed, and its performance was evaluated.

An Implementation of Expert System for Continuous Ship Unloader (연속식 언로더용 전문가 시스템 구현)

  • 서정만;임채근;김정윤
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.490-492
    • /
    • 1998
  • 환경문제를 전혀 야기하지 않으며 하역능률이 뛰어난 차세대 하역설비인 연속식 Unloarder의 하역능률을 관리하고 운전 및 정비의 효율적인 운영을 보장하는 초저가형 Expert System인 SCIS-30과 그 구현에 대하여 소개하고자 한다

A Study on High Stacking System Development at Container Terminal (컨테이너 터미널의 고층 장치시스템 개발방안)

  • Ha Tae-Young;Choi Sang-Hei;Kim Woo-Sung;Choi Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.317-323
    • /
    • 2006
  • This paper deals with High Stacking System(HSS) development to develop a next generation port handling system for accommodating mega-sized container ships. It aims to develop the HSS that maximizes handling capacity within the limited space of the port. The system is expected to resolve the problem of yard space shortage as well as utilize innovative technology to ensure high-performance and automation at the terminal so as to enhance stevedoring productivity. The main objectives of this paper is suggesting the design concept drawing the HSS terminal and simulation analysis was undertaken taking into consideration performance of handling equipment, and port handling system Design concept drawing of the HSS terminal and will be used as base data for basic design and detailed design in actual operations of the terminal in the future. The HSS, to be applied to both conventional and new terminals, is expected to act as a catalyst for enhancing the value-added at ports.

  • PDF

A Comparative Study on Productivity of High Performance Quay Crane in Container Terminal (고성능 안벽크레인의 터미널 하역 생산성 비교분석)

  • Ha Tae-Young;Choi Yong-Seok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.547-553
    • /
    • 2005
  • The purpose of this paper is to evaluate the quay crane productivity in automated container terminal with perpendicular yard layout. In particular, four quay crane (single trolley/dual trolley/double trolley/supertainer) are considered to evaluate the productivity on the terminal performance. Each quay crane load or unload containers by a different process. For each quay crane, two productivities are considered and compared: mechanical productivity, net productivity. As the net productivity of quay crane is significant, in this paper, an application of simulation model to simulate automated container terminal is developed and a wide variety of computational experiments were conducted.

The Effect of Cross Beam on the strength and Stiffness of the Frame in Shuttle Car for LMIT (LMTT용 Suhttle Car의 Frame 강도 및 강성에 미치는 Cross Beam의 영향)

  • Lim J. H.;Han G. J.;Lee K. S.;Han D. S.;Shim J. J.;Lee S. W.;Jeon Y. H.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.323-328
    • /
    • 2004
  • According as the quantity of goods transported by ship is increasing about $7\%$ per year, a port environment is rapidly changing. To meet this situation successfully, the development of the next generation port loading and unloading system (LMTT) is studied. A Frame of shuttle car for LMTT(Linear Motor-based Transfer Technology) consist of three parts which are outer beam inner beam and cross boom. Outer boom supports a container and inner boom is a framework and cross boom reinforces outer and inner boom. In this study, we carried out the finite element analysis for the effect of cross boom on the strength and stiffness qf the frame according to the number if cross beam leading position of container, the distance ratio if inner boom from center.

  • PDF

The Effect of Cross Beam on the strength and Stiffness of the Frame in Shuttle Car for LMTT (LMTT용 셔틀 카의 프레임 강도 및 강성에 미치는 크로스 빔의 영향)

  • Lim J. H.;Han G. J.;Lee K. S.;Han D. S.;Shim J. J.;Lee S. W.;Jeon Y. H.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.77-82
    • /
    • 2005
  • According as the quantity of goods transported by ship is increasing, a port environment is rapidly changing To meet this situation successfully, the development of the next generation port loading and unloading system(LMTT) is studied A Frame of shuttle car for LMTT(Linear Motor-based Transfer Technology) consists of three parts which are outer beam, inner beam and cross beam In this study, we carried out the finite element analysis for the effect of cross beam on the strength and stiffness of the frame according to the number of cross beam, loading position of container, the distance ratio of inner beam from center. The result is as follow ; When the load is applied on outer beam and inner beam concurrently and the number of cross beam is 5, that is the optimum condition in frame design.