• Title/Summary/Keyword: 차분

Search Result 2,237, Processing Time 0.025 seconds

Performance Analysis of Rotation-lock Differential Precoding Scheme (회전로크 구조의 차분 선부호화 기법의 성능 분석)

  • Kim, Young Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.9-16
    • /
    • 2013
  • Long term evolution (LTE) and LTE-Advanced (LTE-A) systems adopt closed-loop multiple-input multiple-output antenna techniques. Equal gain transmission which has equal gain property is the key factor in their codebook design. In this paper, a novel differential codebook structure which maintains the codebook design requirements of LTE or LTE-A systems. Especially, eight-phase shift keying (8-PSK) constellations are used as elements of codewords, which not only maintain equal gain property but also reduce the computation complexity of precoding and decoding function blocks. The equal gain property is very important to uplink because the performance of uplink is very sensitive to the peak-to-average power ratio (PAPR). Moreover, the operation of the proposed differential codebook is explained as a rotation-lock structure. As the results of computer simulations, the steady-state throughput performance of the proposed codebook shows at least 0.9dB of SNR better than those of the conventional LTE codebook with the same amount of feedback information.

A Stable MOT Scheme with Combined Field Integral Equation for the Analysis of Transient Scattering from Conducting Structure (도체 구조물의 과도 산란 해석을 위한 결합 적분방정식의 안정된 MOT 기법)

  • Lee, Chang-Hwa;An, Ok-Kyu;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, a stable marching-on in time(MOT) method with a time domain combined field integral equation(CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time domain electric field integral equation(EFIE) with the magnetic field integral equation(MFIE). The time derivatives in the EFIE and MFIE are approximated using a central finite difference scheme and other terms are averaged over time. This time domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. Numerical results with the proposed MOT scheme are presented and compared with those obtained from the conventional method and the inverse discrete Fourier transform(IDFT) of the frequency domain CFIE solution.

Analysis of 1D and 2D Flows in Open-Channel with FDM and FVM (유한차분법과 유한체적법을 이용한 1차원과 2차원 개수로 흐름해석)

  • Kim, Man Sik;Lee, Jin Hee;Jeong, Chan;Park, Roh Hyuk
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2008
  • The one-dimensional (1D) finite-difference method (FDM) with Abbott-Ionescu scheme and the two-dimensional (2D) finite-volume method (FVM) with an approximate Riemann solver (Osher scheme) for unsteady flow calculation in river are described. The two models have been applied to several problems including flow in a straight channel, flow in a slightly meandering channel and a flow in a meandering channel. The uniform rectangular channel was employed for the purpose of comparing results. A comparison is made between the results of computation on 1D and 2D flows including straight channel, slightly meandering channel and meandering channel application. The implementation of the finite-volume method allows complex boundary geometry represented. Agreement between FVM and FDM results regarding the discharge and stage is considered very satisfactory in straight channel application. It was concluded that a 1D analysis is sufficient if the channel is prismatic and remains straight. For curved (meandering) channels, a 2D or 3D model must be used in order to model the flow accurately.

  • PDF

Key Recovery Attacks on Zorro Using Related-Key Differential Characteristics, and Collision Attacks on PGV-Zorro (Zorro의 연관키 차분특성을 이용한 키 복구 공격 및 PGV-Zorro의 충돌쌍 공격)

  • Kim, Giyoon;Park, Eunhu;Lee, Jonghyeok;Jang, Sungwoo;Kim, Jihun;Kim, Hangi;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1059-1070
    • /
    • 2018
  • The block cipher Zorro is designed to reduce the implementation cost for side-channel countermeasure. It has a structure similar to AES, but the number of S-Boxes used is small. However, since the master key is used as the round key, it can be vulnerable to related key attacks. In this paper, we show key recovery attacks on Zorro using related-key differential characteristics. In addition, the related key differential characteristics are fatal when Zorro is used as the base block cipher of the hash function. In this paper, we describe how these characteristics can be linked to collision attacks in the PGV models.

Indoor Propagation Channel Modeling Using the Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 실내 전파 채널 모델링)

  • Chung, Sun-Oh;Lim, Yeong-Seog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1847-1853
    • /
    • 2011
  • Analysis of an indoor propagation channel has conventionally used the ray-tracing method. But, in this paper, we had modelling the channel for three dimensional indoor structure by the finite difference time domain method for three dimensional full wave analysis. An excitation signal of the FDTD method used plane wave. The plane wave was excited using the total field/scattered field method. And absorbing boundary condition used the perfectly matched layer method with 7 layers. An living room for the simulation of indoor channel modeling is surrounded the wall that be composed of the wood, the conductor, the glass and concrete. When there are furniture in the living room or not, it were simulated, respectively. As simulation results, we could identify the fading effect of multipath at indoor propagation environment, calculated mean excess delay and rms delay spread for the receiver design.

Finite Difference Analysis of Laminated Composite Shell Structures with Various Geometrical Shapes (다양한 기하학적 형상을 갖는 복합 적층쉘 구조의 유한차분해석)

  • Park, Hae-Gil;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.24-34
    • /
    • 2010
  • This paper analyzed the partial differential equations of laminated composite shells of revolution by using the finite difference method. The proof that numerical results are reasonable and accurate is obtained through converge ratio analysis and commercial program LUSAS for the structural analysis. The purpose of this study is to examine closely the engineering advantages and to analyze the structural behaviors of the anisotropic shells of revolution. Thus, the relevant reinforcement and most suitable arrangement of fiber to produce the highest strength are proposed through the numerical results according to a variety of parameter study. Namely, the distribution of displacements and stress resultants are analyzed according to the change of meridian's curvature, the ratio of height-width of shell, subtended angle, fiber angle, and so on. Using these distribution, the most suitable shell may be proposed to produce the highest strength. Also, the configuration of the entire laminated composite conical shells is analysed, and a variety of the design criterion of circular conical shell are proposed and studied in engineering view points.

  • PDF

Finite Difference Numerical Solutions for Isotropic Rectangular Thin Elastic Plates with Three Edges Clamped and the Other Free (등방성 직사각형의 3변 고정 1변 자유 얇은 탄성판에 대한 유한차분법의 수치해)

  • Seo Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.225-240
    • /
    • 2006
  • In order to calculate bending moments of rectangular plates with three edges clamped the other free subjected to both a uniform load and a triangular load, a finite difference equation for the non-dimensional governing equation are presented and numerical solutions with different aspect ratios and/or number of grid points are analyzed. The finite difference solutions are obtained by use of grid points up to 11,520 and the optimum grid points according to aspect ratios of the plate are presented as well. The obtained numerical solutions are shown to satisfy the given x moment boundary condition at the free edge, which can not be satisfied in Levy's analytical solutions and peculiar behaviour of the calculated moments is observed around the corners between the free edge and fixed ones. The numerical solutions of bending moments subjected to both a uniform load and a triangular load are compared with the corresponding analytical solutions which are shown in very good agreement on the solution domain except the neighborhood of the free edge.

Adaptive Background Subtraction Based on Genetic Evolution of the Global Threshold Vector (전역 임계치 벡터의 유전적 진화에 기반한 적응형 배경차분화)

  • Lim, Yang-Mi
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1418-1426
    • /
    • 2009
  • There has been a lot of interest in an effective method for background subtraction in an effort to separate foreground objects from a predefined background image. Promising results on background subtraction using statistical methods have recently been reported are robust enough to operate in dynamic environments, but generally require very large computational resources and still have difficulty in obtaining clear segmentation of objects. We use a simple running-average method to model a gradually changing background, instead of using a complicated statistical technique. We employ a single global threshold vector, optimized by a genetic algorithm, instead of pixel-by-pixel thresholds. A new fitness function is defined and trained to evaluate segmentation result. The system has been implemented on a PC with a webcam, and experimental results on real images show that the new method outperforms an existing method based on a mixture of Gaussian.

  • PDF

Three-dimensional Electromagnetic Modeling in Frequency Domain (주파수영역 전자법의 3차원 모델링)

  • Jang, Hannuree;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.163-170
    • /
    • 2014
  • Development of a modeling technique for accurately interpreting electromagnetic (EM) data is increasingly required. We introduce finite difference (FD) and finite-element (FE) methods for three-dimensional (3D) frequency-domain EM modeling. In the controlled-source EM methods, formulating the governing equations into a secondary electric field enables us to avoid a singularity problem at the source point. The secondary electric field is discretized using the FD or FE methods for the model region. We represent iterative and direct methods to solve the system of equations resulting from the FD or FE schemes. By applying the static divergence correction in the iterative method, the rate of convergence is dramatically improved, and it is particularly useful to compute a model including surface topography in the FD method. Finally, as an example of an airborne EM survey, we present 3D modeling using the FD method.

Analysis of the Cylindrical Metamaterial Slab Using the Higher Order-mode Finite Difference Time Domain Method (고차모드 시간영역 유한차분법을 이용한 원통형 메타물질 Slab의 해석)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2010
  • In this paper, the higher order FDTD(Finite-Difference Time-Domain) method is used to obtain the frequency response characteristics of the cylindrical metamaterial slab. FDTD method is one of strongest electromagnetic numerical method which is widely used to analyze the metamaterial structure because of its simplicity and the dispersive FDTD equation which has the dispersive effective dielectric constant and permeability are derived to analyze the metamaterials. This derived dispersive FDTD equation has no errors in analyzing the dielectric materials but there are some time and frequency errors in case of analyzing the metamaterials. We used the higher order FDTD method to obtain the accurate frequency response of the metamaterials. Comparisons between the dispersive FDTD method and the higher order FDTD method are performed in this paper also. From the results, we concluded that more accurate frequency response for various metamaterials applications can be obtained using the proposed method in this paper.