• 제목/요약/키워드: 차량 탐지

검색결과 232건 처리시간 0.023초

저속주행환경에서 컬러비전 기반의 근거리 전방차량추적 (Color Vision Based Close Leading Vehicle Tracking in Stop-and-Go Traffic Condition)

  • 노광현;한민홍
    • 한국정보처리학회논문지
    • /
    • 제7권9호
    • /
    • pp.3037-3047
    • /
    • 2000
  • 본 논문에서는 커러영상처리로 차량 후면에 위치하고 붉은색을 띄는 미등과 브레이크등을 이용하여 저속주행환경에서 근거리 전방차량을 추적하는 방법에 대해 설명한다. HSV 컬러모델로 변환된 컬러영상에서 미등과 브레이크등의 컬러특징을 이용하여 후보영역을 분할한 후, 미등과 브레이크등 패턴의 기하학적 특징과 위치적 특징을 이용하여 한 쌍의 미등 혹은 브레이크등을 탐지한다. 탐지된 등의 위치를 이용하여 전방차량의 위치를 측정하고 연속적으로 추적한다. 또한, 등 영역내의 HSV 컬러요소 변화를 측정하여 전방차량의 브레이크 사용여부를 판단한다. 도심지의 도로영상을 이용한 실험에서 성공적으로 근거리 전방차량을 추적할 수 있었으며, 주간보다 야간에서 효과적으로 적용될 수 있었다. 또한 본 알고리즘이 구현된 컬러비전시스템을 무인자동차 KAV-III(Korea Autonomous Vehicle-III)에 탑재하여 야간에 자동으로 전방차량을 15km/h의 속도로 따라갈 수 있는 결과를 얻었다. 이 방법은 도심지에서 가다서다를 반복하는 저속주행환경에서 차량 스스로 운전하여 운전자의 부담을 줄일 수 있는 LSA(Low Speed Automation)시스템 개발에 적용될 수 있을 것이다.

  • PDF

객체 인식 모델을 활용한 적재불량 화물차 탐지 시스템 개발 (An Overloaded Vehicle Identifying System based on Object Detection Model)

  • 정우진;박용주;박진욱;김창일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.562-565
    • /
    • 2022
  • 최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통 안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만장의 대형차, 소형차, 중형차 별 적재 불량 차량과 일반차량으로 구분 된 데이터 셋 중 종류별로 제공되는 CCTV, 블랙박스, 카메라 시점의 적재 불량 차량 데이터 셋을 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다.

  • PDF

4S-Van을 이용한 공간정보 구축과 갱신을 위한 변화탐지 시스템의 개발 (Development of Change Detection System for Construction and Update of Spatial Information using 4S-Van)

  • 황태현;주인학;최경호
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2005년도 GIS/RS 공동 춘계학술대회
    • /
    • pp.47-52
    • /
    • 2005
  • 본 논문에서는 4S-Van에 의하여 수집된 동영상으로부터 공간정보, 특히 도로 표지판을 구축하고 갱신할 수 있는 변화탐지 기술에 대하여 소개한다. 4S-Van은 차량의 위치/자세정보와 영상을 동기화하여 취득하고 이로부터 공간객체의 위치정보를 구축하는 시스템이다. 4S-Van에서 취득한 영상으로부터 표지판을 구축하고 갱신하는 작업은 수동 입력에 의한 많은 시간을 필요로 하며, 본 논문에서는 이를 해결하기 위하여 영상으로부터 표지판 정보를 구축 및 갱신할 때 수동 입력을 최소화하기 위한 방법을 제안하고 시스템을 구축한 결과를 제시한다. 4S-Van 데이터로부터 객체의 위치를 결정하는 사진측량기술과 영상처리기술을 결합하여 공간객체를 인식할 수 있는 기술을 제안하였으며, 새로 취득된 동영상에서 객체의 변화를 탐지함으로써 해당객체의 정보만을 새로 구축할 수 있도록 하였다. 개발된 시스템은 표지판 정보의 효율적 구축과 갱신을 지원할 수 있다.

  • PDF

광 스페클 패턴 변화를 이용한 침입자 탐지용 디지털 신호처리 시스템 구현 및 성능 분석 (Implementation and Analysis of Digital Signal Processing System for Intruder Detection using the Variations of the Optical Speckle Patterns)

  • 김인수;강진석;김기만
    • 한국전자파학회논문지
    • /
    • 제15권4호
    • /
    • pp.360-367
    • /
    • 2004
  • 본 논문에서는 감도와 신뢰성이 높은 멀티모드 광섬유에서 스페클 패턴(speckle pattern) 변화를 이용한 침입자 탐지용 디지털 신호처리 시스템을 구현하였다. 구현된 시스템의 성능은 실측 데이터로부터 분석되었다. 아울러 성능을 향상시키기 위하여 적응 디지털 필터를 도입하였다. 실험 결과 침입자 탐지는 96 % 이상이었으며, 사람과 차량을 구분하는 성능은 평균 90 %로 나타났다.

Apollonius Circle 기법을 활용한 드론 방향탐지 연구 (A Study on the Direction finding of Drones Using Apollonius Circle Technique)

  • 최홍락;정원호;김경석
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.83-92
    • /
    • 2018
  • 본 논문은 빠르게 확대되고 있는 산업으로 각광 받고 있는 드론을 활용하여 특정 신호를 발생하는 목표물의 위치를 추정하고자 Apollonius Circle 기법을 활용하였다. 기존의 방향탐지 방법은 지상에서 차량을 통해 실시하거나 높은 위치에 안테나를 설치하여 목표물의 위치를 탐지했지만 기존의 방향탐지 방법은 LOS 신호 수신 환경을 구성하기 어렵고 또한 장비의 무게와 크기 때문에 이동 측정이 어렵다. 그러나 드론을 활용한 방향탐지는 높은 고도에서 비행하는 드론을 이용해 LOS 신호 수신 환경을 구성 및 이동 측정이 쉽다. 본 연구에서는 지상 방향탐지의 측정데이터를 이용하여 드론의 신호 수신환경을 3차원 800MHz Path-Loss Model를 활용하여 신호를 재구성하여 드론 수신 Power로 재구성하였으며 목표물의 위치를 추정하고자Apollonius Circle 기법을 활용하여 목표물의 위치를 추정하는 시뮬레이션을 구성하였다. 시뮬레이션은 지상 방향탐지와 드론 방향탐지를 구성하여 목표물의 위치추정 성능을 분석하였다.

이것이 신기술이다 - F/1.0 이중배율 비냉각 열화상카메라 광학계 개발

  • 김현규
    • 광학세계
    • /
    • 통권122호
    • /
    • pp.41-43
    • /
    • 2009
  • 본 연구에서는 최근에 민수용으로 활용 빈도가 높은 $320{\times}240$ 어레이를 갖는 비냉각 검출기에 적합하도록 F/1.0. 이중배율 광학계를 설계제작하여 열영상을 획득하고 광학성능을 확인하기 위하여 최소분해가능온도차(MRTD; Minimum Resolvable Temperature Difference) 값을 측정하고 사람과 차량의 탐지를 추정하였다.

  • PDF

객체 인식 모델 기반 실시간 교통신호 정보 인식 (Real-time traffic light information recognition based on object detection models)

  • 주은오;김민수
    • 지적과 국토정보
    • /
    • 제52권1호
    • /
    • pp.81-93
    • /
    • 2022
  • 최근 자율주행 기술에서 차량 주변 객체 인식과 교통표지판 및 차량 신호 인식을 위한 연구가 활발히 수행되고 있으며, 특히 차량 신호 인식은 자율주행 기술에 있어서 핵심 요소로 평가되고 있다. 이에 차량 신호 인식을 위한 다양한 연구가 진행되어 왔으며, 최근에는 딥러닝 기반 객체 인식 모델을 활용한 차량 신호 인식 연구가 크게 증가하고 있다. 또한 AIHub에서 음성, 비전, 자율주행 등을 위한 양질의 국내 인공지능 학습데이터 셋이 공개됨에 따라 이들 데이터를 활용한 국내 환경에 적합한 차량 신호 인식 모델의 개발도 가능하게 되었다. 이에 본 연구에서는 AIHub의 학습데이터와 객체 인식모델 YOLO를 적용한 국내 차량 신호 인식 모델을 개발하였다. 특히 차량 신호의 인식 성능을 개선하기 위하여 YOLOv4와 YOLOv5의 다양한 모델을 적용하였으며 학습데이터의 클래스도 다양하게 분류하여 실험을 수행하였다. 결론적으로 YOLOv5가 YOLOv4보다 차량 신호 인식에 조금 더 적합함을 확인할 수 있었으며, 두 모델의 아키텍처 비교를 통하여 YOLOv5 성능이 우수한 이유를 확인할 수 있었다.

차량정밀측위를 위한 복합측위 기술 동향 (Overview of sensor fusion techniques for vehicle positioning)

  • 박진원;최계원
    • 한국전자통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.139-144
    • /
    • 2016
  • 본 논문에서는 차량정밀측위를 위한 센서융합 기술의 최근 동향에 대해 다룬다. GNSS 만으로는 자율주행에서 요구하는 정밀측위의 정확도 및 신뢰도를 만족시킬 수 없다. 본 논문에서는 GNSS와 주행계, 자이로스코프 등의 관성항법 센서를 결합하는 복합측위 기술을 소개한다. 또한 라이다 및 스테레오 비전에서 탐지된 랜드마크를 정밀지도에 수록된 정보와 매칭시키는 측위 기법의 최근 동향을 소개한다.

Swin Transformer를 이용한 항공사진에서 다중클래스 차량 검출 (The Detection of Multi-class Vehicles using Swin Transformer)

  • 이기춘;정유석;이창우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.112-114
    • /
    • 2021
  • 도시 상태를 탐지하기 위해서는 운송 수단 수, 교통 흐름등이 필수적으로 파악되어야 할 요소이다. 본 논문에서는 기존의 Mask R-CNN을 이용하여 다양한 차량의 형태를 학습하고, 드론으로 촬영한 도시항공 영상에서 특정 유형의 차량 들을 검출하는 시스템을 오늘날 NLP 분야에서 널리 쓰이게 된 Transformer 모델을 컴퓨터 비전 문제에 도입하여 기존의 컨볼루션 신경망보다 높은 성능을 보여준 Swin Transformer 모델을 이용하여 기존의 연구에서 보여주었던 검출 시스템 능력을 향상시켰다.

  • PDF

인공 위성 사진 내 선박 탐지 정확도 향상을 위한 Watershed 알고리즘 기반 RoI 축소 기법 (Watershed Algorithm-Based RoI Reduction Techniques for Improving Ship Detection Accuracy in Satellite Imagery)

  • 이승재;윤지원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권8호
    • /
    • pp.311-318
    • /
    • 2021
  • 해상 안보, 국제 동향 파악 등 다양한 이유로 해상 사진에서 선박을 탐지하고자하는 연구는 지속되어 왔다. 인공지능의 발달로 인해 사진 및 영상 내 객체 탐지를 위한 R-CNN 모델이 등장하였고 객체탐지의 성능이 비약적으로 상승하였다. R-CNN 모델을 이용한 해상 사진에서의 선박 탐지는 인공위성 사진에도 적용되기 시작하였다. 하지만 인공위성 사진은 넓은 지역을 투사하기 때문에 선박 외에도 차량, 지형, 건물 등 다양한 객체들이 선박으로 인식되는 경우가 있다. 본 논문에서는 R-CNN계열 모델을 이용한 인공위성 사진에서의 선박 탐지의 성능을 개선하기 위한 새로운 방법론을 제안한다. 표지자 기반 watershed 알고리즘을 통해 육지와 바다를 분리하고 morphology 연산을 수행하여 RoI를 한 차례 더 특정한 뒤 특정된 RoI에 R-CNN 계열 모델을 사용하여 선박을 탐지하여 오탐을 줄인다. 해당 방법을 이용하여 Faster R-CNN을 사용하였을 경우, Faster R-CNN만을 사용했을 때에 비해 오탐률을 80% 줄일 수 있었다.