• 제목/요약/키워드: 차량 클라우드

검색결과 52건 처리시간 0.033초

텍스트 마이닝을 이용한 현대 자동차 중국시장 소비자의 만족 및 불만족 요인 분석 연구: 다른 브랜드와의 비교 (Text Mining-Based Analysis of Hyundai Automobile Consumer Satisfaction and Dissatisfaction Factors in the Chinese Market: A Comparison with Other Brands)

  • 최염;남인용
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.539-549
    • /
    • 2024
  • 본 연구는 텍스트 마이닝 기법 중 빈도분석, 워드 클라우드와 LDA 토픽 모델링 등을 사용하여, 중국 시장에서 현대자동차를 중심으로 토요타, 폭스바겐, 뷰익, 지리 등의 자동차 브랜드와 비교하며 소비자 만족와 불만족의 키워드 및 토픽을 분석하였다. 연구 대상은 2021년식-2023년식의 다섯 브랜드의 준중형 차량으로, 이 차량들에 대한 소비자 만족과 불만족 리뷰를 수집하여 분석하였다. 분석 결과, 현대자동차 아반떼는 긴 축거를 포함한 다양한 만족 요인을 보여주었다. 그러나 아반떼에 대한 불만족 요인으로는 조종, 엔진 성능, 트렁크 공간, 샤시 및 서스펜션, 안전 구성, 음향 스피커의 수량 및 브랜드, 음악 회원, 격리대, 스크린반사, CarLife 및 지도 등이 지적되었다. 이러한 문제점들을 개선하면 현대자동차의 중국 시장에서의 경쟁력이 크게 향상될 것으로 보인다. 한편, 기존 연구들은 주로 문헌 연구와 설문조사에 초점을 맞추었으나, 이 방법들은 연구자가 설정한 변수에 한정된 소비자 인식만을 밝혀내는 데 그쳤다. 본 연구는 텍스트 마이닝을 통한 다양한 자동차 브랜드 간의 비교를 통해 시장 동향과 소비자 선호에 대한 더 깊은 이해를 도모할 수 있다. 또한, 현대자동차를 포함한 다른 브랜드들이 중국 시장에서의 마케팅 전략을 개선하는 데 유용한 정보를 제공한다.

도심자율주행을 위한 라이다 정지 장애물 지도 기반 차량 동적 상태 추정 알고리즘 (LiDAR Static Obstacle Map based Vehicle Dynamic State Estimation Algorithm for Urban Autonomous Driving)

  • 김종호;이호준;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.14-19
    • /
    • 2021
  • This paper presents LiDAR static obstacle map based vehicle dynamic state estimation algorithm for urban autonomous driving. In an autonomous driving, state estimation of host vehicle is important for accurate prediction of ego motion and perceived object. Therefore, in a situation in which noise exists in the control input of the vehicle, state estimation using sensor such as LiDAR and vision is required. However, it is difficult to obtain a measurement for the vehicle state because the recognition sensor of autonomous vehicle perceives including a dynamic object. The proposed algorithm consists of two parts. First, a Bayesian rule-based static obstacle map is constructed using continuous LiDAR point cloud input. Second, vehicle odometry during the time interval is calculated by matching the static obstacle map using Normal Distribution Transformation (NDT) method. And the velocity and yaw rate of vehicle are estimated based on the Extended Kalman Filter (EKF) using vehicle odometry as measurement. The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment, and is verified with data obtained from actual driving on urban roads. The test results show a more robust and accurate dynamic state estimation result when there is a bias in the chassis IMU sensor.

라이다 기반 실내 자율주행 차량에서 신경망 학습을 사용한 성능평가 (Performance Evaluation Using Neural Network Learning of Indoor Autonomous Vehicle Based on LiDAR)

  • 권용훈;정인범
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권3호
    • /
    • pp.93-102
    • /
    • 2023
  • 클라우드를 통한 데이터 처리는 통신 과정에서 지연시간과 통신비용 증가 등 같은 많은 문제가 발생한다. 사물인터넷 분야에서는 이러한 문제를 해결하기 위해 엣지 컴퓨팅 연구가 활발히 이루어지고 있고, 대표적인 응용 분야로 자율주행이 있다. 실내 자율주행에서는 실외와 달리 GPS와 교통정보를 이용할 수 없기 때문에 센서를 활용하여 주변 환경을 인식해야 한다. 그리고 자원이 제약된 모바일 환경이기 때문에 효율적인 자율주행 시스템이 필요하다. 본 논문에서는 실내 환경에서 자율주행을 위해 신경망을 사용하는 기계학습을 제안한다. 신경망 모델은 LiDAR 센서에서 측정된 거리 데이터를 바탕으로 현재 위치에 가장 적절한 주행 명령을 예측한다. 신경망의 입력 데이터의 수에 따른 성능 평가를 수행하기 위해 6가지의 학습 모델을 설계하였다. 주행과 학습을 위해 Raspberry Pi 기반의 자율주행 차량을 제작하였고, 학습 데이터 수집과 성능평가를 위한 실내 주행 트랙을 제작하였다. 6가지의 신경망 모델들은 정확도와 응답시간 그리고 배터리 소모에 대한 성능 비교를 하였고, 입력 데이터의 수가 성능에 미치는 영향을 확인하였다.

카 쉐어링 클라우드 환경에서 최적화된 바이오 정보 기반 보안 기법 설계 (Design of Secure Scheme based on Bio-information Optimized for Car-sharing Cloud)

  • 이광형;박상현
    • 한국산학기술학회논문지
    • /
    • 제20권11호
    • /
    • pp.469-478
    • /
    • 2019
  • 카 쉐어링 서비스는 경제위기 이후 실용적 소비패턴 의식의 확산과 환경의식의 고취, 스마트폰 확산을 통한 서비스 이용 편의성이 증가됨으로 인해 새로운 대중교통으로 자리매김을 하고 있다. 시장이 발전하고 많은 사람들이 이용하고 있지만 그에 대한 보안은 확실히 이뤄지지 않고 있다. 차를 이용하기 위해선 단지 ID와 PW로 로그인만 하게 되면 차량을 렌트하고 제어할 수 있어 피해가 예상된다. 본 논문에서 제안하는 프로토콜은 지문정보를 이용하여 카 빅데이터가 등록되어 있는 다양한 Service Provider Cloud을 브로커를 통해 사용자에게 최적화된 서비스와 간편하고 강력한 인증을 제공하고자 한다. 제안한 기법을 이용하면 바이오정보의 노출을 줄일 수 있고, 하나의 브로커를 통해 다수의 Service Provider Cloud로부터 서비스를 받을 수 있다. 또한 기존 카쉐어링 플랫폼 대비 모바일 디바이스에서 공개키 연산 및 세션키 저장량을 20% 가량 낮췄고, 간편하고 강력한 인증을 제공하고 보안채널을 구성하기 때문에 안전한 통신을 할 수 있다. 향후 카쉐어링 서비스 클라우드 환경에서 본 논문에서 제안한 기법을 통해 안전한 통신과 사용자의 편의성을 증대 시키기를 기대한다.

LKS 시스템을 위한 라이다 기반 MRM 알고리즘 개발 (Development of LiDAR-Based MRM Algorithm for LKS System)

  • 손원일;오태영;박기홍
    • 한국ITS학회 논문지
    • /
    • 제20권1호
    • /
    • pp.174-192
    • /
    • 2021
  • 카메라나 레이더에 비해 높은 인지 성능을 제공하는 라이다 센서는 높은 가격으로 의해 ADAS나 자율주행에 적용되기 어려웠으나, 최근 가격이 빠르게 낮아지고 있어 라이다를 활용한 기존 자율주행 기능 개선에 관한 기대가 높아지고 있다. 레벨3 자율주행자동차의 경우, 센서의 결함 또는 한계 등 인지시스템에 위험한 상황이 발생했을 때 운전자에게 수동모드로의 제어권 전환을 요청하며, 만약 이러한 요청에도 운전자가 반응하지 않을 경우 MRM 즉 최소위험기동을 구현하여야 한다. 본 연구에서는 이러한 배경을 바탕으로 인지 시스템에서 생기는 위험으로 인해 LKS의 정상작동이 힘든 경우에 대한, 라이다 기반의 MRM 알고리즘을 개발하였다. 본 논문의 LKS MRM 기술은 라이다에서 수집된 포인트 클라우드 데이터를 기반으로 객체 군집화를 통해 전방에 있는 차량의 이동 경로를 생성하고, 이를 자차량의 목표 경로점으로 변환하여, 카메라 기반의 LKS가 정상 작동을 할 수 없는 경우 라이다 기반의 경로 추종제어를 통해 최소위험기동을 수행한다. 제안된 알고리즘의 성능을 검증하기 위하여 HAZOP 기법을 사용하여 위험원을 식별하였고 이를 바탕으로 검증용 시나리오 3가지를 도출하여, 뵨 연구에서 구축한 시뮬레이션 환경에서 알고리즘 검증을 수행하였다. 그 결과 본 연구에서 제안한 라이다 기반 LKS MRM 알고리즘이 여러 가능한 인지시스템의 위험 상황에 대해 차선이탈을 방지하고 이를 통해 교통사고를 방지하는 것을 확인할 수 있었다.

모바일 웹 어플리케이션을 구현하기 위한 Node.js 파일에 대한 조사 (An Investigation into the Applicability of Node.js as a Platform for implementing Mobile Web Apps.)

  • 라이오넬;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.286-289
    • /
    • 2016
  • 본 논문에서는 오직 모바일 클라우드 컴퓨팅만을 사용하여 스마트폰 기반의 모바일 앱에서 Node.js 파일이 비동기 차단, 비 차단, 이벤트 기반 프로그램 패러다임을 제시한다. 또한 데이터베이스로 잘 알려진 MongoDB를 사용하여 App 사용자에 의해 전송된 방대한 데이터들을 처리한다. Node.js는 프로그래머가 동시 접속 문제를 해결하는 데 필요한 도구를 제공하는 것을 목표로 하고 있다. 원격 사용자들이 드라이버 입력을 전달하고 외부 응용 프로그램에서 출력을 제공하는 응용 프로그램을 고려하고 있는데, 차량을 이용하여 실시간으로 데이터를 분석 할 수 있는 스마트 폰 인터페이스 방식으로 응용 프로그램을 구현하여 제안 된 구조의 효과를 보여주고자 한다.

  • PDF

나노 첨가제에 따른 Sn-Ag-Cu계 솔더페이스트의 젖음성 및 금속간화합물 (Wettability and Intermetallic Compounds of Sn-Ag-Cu-based Solder Pastes with Addition of Nano-additives)

  • 서성민;스리 하리니 라젠드란;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제29권1호
    • /
    • pp.35-41
    • /
    • 2022
  • 5G 시대를 맞아, 인공지능, 클라우드 컴퓨팅, 자율주행 차량, 스마트 제조 등의 기술 소요가 증가하고 있다. 전자기기의 고효율을 위해 고집적회로 및 패키징 연구는 중요하다. 전해도금된 솔더는 범프 조성의 균일성에 한계가 있다. 작은 크기의 솔더 파우더로 구성된 솔더 페이스트는 고집적 패키징에 일반적으로 사용되는 솔더 중 하나이다. 솔더 페이스트에 나노 입자를 첨가하거나 기판 표면 마감 처리를 하여 젖음성을 향상시키고, 금속 패드 계면에서 금속간화합물의 성장을 억제하는 연구가 진행중이다. 본 논문은 나노 입자 첨가를 통한 솔더 페이스트의 젖음성 향상과 계면 금속간화합물의 성장을 억제하는 원리에 대하여 설명한다.

터널의 비접촉 이동식 상태점검 장비: 리뷰 (Non-contact mobile inspection system for tunnels: a review)

  • 이철희;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제25권3호
    • /
    • pp.245-259
    • /
    • 2023
  • 본 논문의 목적은 국내외 터널 스캐닝 시스템들을 분석하여 비접촉 이동식 상태점검 장비 개발에 대한 시사점을 도출하기 위한 것이다. 국내외 터널 스캐닝 시스템은 레이저 스캔과 이미지 스캔의 두 가지 기술로 개발되고 있다. 레이저 스캐닝 장비는 포인트 클라우드로부터 터널 라이닝의 기하하적 특성을 재현하는데 장점이 있다. 이미지 스캐닝 장비는 컴퓨터 비전을 활용하여 터널 라이닝 표면의 미세한 균열, 누수 등 손상 검출이 용이하다. 터널 라이닝의 손상 검출을 위해서는 이미지 스캐닝 장비가 더 적합할 것으로 분석되었다. 향후 개발 예정인 카메라 기반의 터널 스캐닝 시스템은 조명, 저장장치, 전원 공급 장치 및 차량 주행 속도 동기화 제어 장치로 구성되어야 할 것이다.

엣지 클라우드 시스템 기반 버스 정보 시스템의 지연시간 분석연구 (A Study on the Latency Analysis of Bus Information System Based on Edge Cloud System)

  • 서승호;고대식
    • Journal of Platform Technology
    • /
    • 제11권3호
    • /
    • pp.3-11
    • /
    • 2023
  • 실시간 관제 시스템은 IoT, 이동통신과 같은 기반 기술의 발달과 공장관리, 차량 운행 체크 등 실시간성이 중요시되는 서비스가 증가함에 따라 급격히 성장하고 있다. 이 시스템의 시간적 민감성을 높이기 위해 다양한 솔루션이 제시되어 왔으나, 현재 대부분의 실시간 관제 시스템은 관제소 등에 위치한 로컬 서버와 다수의 클라이언트로 구성되어 있고, 이들은 다양한 단계를 거쳐 관제 시스템이 위치한 로컬 서버로 전송되고, 그 대응 역시 동일한 단계를 거쳐 진행되는 등 기존 네트워크 및 시스템의 구조적 한계가 있다. 본 논문에서는 실시간 관제 시스템 중 하나인 버스 정보 시스템이 정보를 수집한 시점에서 사용자에게 해당 정보를 제공하기까지 소모되는 시간을 줄일 수 있는 엣지 컴퓨팅 기반 실시간 관제 모델을 제안하였다. 기존 모델과 엣지 컴퓨팅 모델을 시뮬레이션 한 결과, 엣지 컴퓨팅 모델은 사용자에게 데이터를 전송하기 위한 코스트가 기존 모델에 비해 최소 10% 에서 최대 80%까지 감소함을 확인하였다.

  • PDF

도로 주행환경 분석을 위한 빅데이터 플랫폼 구축 정보기술 인프라 개발 (Development of Information Technology Infrastructures through Construction of Big Data Platform for Road Driving Environment Analysis)

  • 정인택;정규수
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.669-678
    • /
    • 2018
  • 본 연구는 차량센싱데이터, 공공데이터 등 다종의 빅데이터를 활용하여 주행환경 분석 플랫폼 구축을 위한 정보기술 인프라를 개발하였다. 정보기술 인프라는 H/W 기술과 S/W 기술로 구분할 수 있다. 먼저, H/W 기술은 빅데이터 분산 처리를 위한 병렬처리 구조의 소형 플랫폼 서버를 개발하였다. 해당 서버는 1대의 마스터 노드와 9대의 슬래이브 노드로 구성하였으며, H/W 결함에 따른 데이터 유실을 막기 위하여 클러스터 기반 H/W 구성으로 설계하였다. 다음으로 S/W 기술은 빅데이터 수집 및 저장, 가공 및 분석, 정보시각화를 위한 각각의 프로그램을 개발하였다. 수집 S/W의 경우, 실시간 데이터는 카프카와 플럼으로 비실시간 데이터는 스쿱을 이용하여 수집 인터페이스를 개발하였다. 저장 S/W는 데이터의 활용 용도에 따라 하둡 분산파일시스템과 카산드라 DB로 구분하여 저장하는 인터페이스를 개발하였다. 가공 S/W는 그리드 인덱스 기법을 적용하여 수집데이터의 공간 단위 매칭과 시간간격 보간 및 집계를 위한 프로그램을 개발하였다. 분석 S/W는 개발 알고리즘의 탐재 및 평가, 장래 주행환경 예측모형 개발을 위하여 제플린 노트북 기반의 분석 도구를 개발하였다. 마지막으로 정보시각화 S/W는 다양한 주행환경 정보제공 및 시각화를 위하여 지오서버 기반의 웹 GIS 엔진 프로그램을 개발하였다. 성능평가는 개발서버의 메모리 용량과 코어개수에 따른 연산 테스트를 수행하였으며, 타 기관의 클라우드 컴퓨팅과도 연산성능을 비교하였다. 그 결과, 개발 서버에 대한 최적의 익스큐터 개수, 메모리 용량과 코어 개수를 도출하였으며, 개발 서버는 타 시스템 보다 연산성능이 우수한 것으로 나타났다.